Xiaoshan Wu;Weihua He;Man Yao;Ziyang Zhang;Yaoyuan Wang;Bo Xu;Guoqi Li
{"title":"利用深度尖峰神经网络进行基于事件的深度预测","authors":"Xiaoshan Wu;Weihua He;Man Yao;Ziyang Zhang;Yaoyuan Wang;Bo Xu;Guoqi Li","doi":"10.1109/TCDS.2024.3406168","DOIUrl":null,"url":null,"abstract":"Event cameras have gained popularity in depth estimation due to their superior features such as high-temporal resolution, low latency, and low-power consumption. Spiking neural network (SNN) is a promising approach for processing event camera inputs due to its spike-based event-driven nature. However, SNNs face performance degradation when the network becomes deeper, affecting their performance in depth estimation tasks. To address this issue, we propose a deep spiking U-Net model. Our spiking U-Net architecture leverages refined shortcuts and residual blocks to avoid performance degradation and boost task performance. We also propose a new event representation method designed for multistep SNNs to effectively utilize depth information in the temporal dimension. Our experiments on MVSEC dataset show that the proposed method improves accuracy by 18.50% and 25.18% compared to current state-of-the-art (SOTA) ANN and SNN models, respectively. Moreover, the energy efficiency can be improved up to 58 times by our proposed SNN model compared with the corresponding ANN with the same network structure.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 6","pages":"2008-2018"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event-Based Depth Prediction With Deep Spiking Neural Network\",\"authors\":\"Xiaoshan Wu;Weihua He;Man Yao;Ziyang Zhang;Yaoyuan Wang;Bo Xu;Guoqi Li\",\"doi\":\"10.1109/TCDS.2024.3406168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event cameras have gained popularity in depth estimation due to their superior features such as high-temporal resolution, low latency, and low-power consumption. Spiking neural network (SNN) is a promising approach for processing event camera inputs due to its spike-based event-driven nature. However, SNNs face performance degradation when the network becomes deeper, affecting their performance in depth estimation tasks. To address this issue, we propose a deep spiking U-Net model. Our spiking U-Net architecture leverages refined shortcuts and residual blocks to avoid performance degradation and boost task performance. We also propose a new event representation method designed for multistep SNNs to effectively utilize depth information in the temporal dimension. Our experiments on MVSEC dataset show that the proposed method improves accuracy by 18.50% and 25.18% compared to current state-of-the-art (SOTA) ANN and SNN models, respectively. Moreover, the energy efficiency can be improved up to 58 times by our proposed SNN model compared with the corresponding ANN with the same network structure.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":\"16 6\",\"pages\":\"2008-2018\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10592043/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10592043/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Event-Based Depth Prediction With Deep Spiking Neural Network
Event cameras have gained popularity in depth estimation due to their superior features such as high-temporal resolution, low latency, and low-power consumption. Spiking neural network (SNN) is a promising approach for processing event camera inputs due to its spike-based event-driven nature. However, SNNs face performance degradation when the network becomes deeper, affecting their performance in depth estimation tasks. To address this issue, we propose a deep spiking U-Net model. Our spiking U-Net architecture leverages refined shortcuts and residual blocks to avoid performance degradation and boost task performance. We also propose a new event representation method designed for multistep SNNs to effectively utilize depth information in the temporal dimension. Our experiments on MVSEC dataset show that the proposed method improves accuracy by 18.50% and 25.18% compared to current state-of-the-art (SOTA) ANN and SNN models, respectively. Moreover, the energy efficiency can be improved up to 58 times by our proposed SNN model compared with the corresponding ANN with the same network structure.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.