通过快速去噪扩散隐含模型检测工业产品表面缺陷

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yue Wang, Yong Yang, Mingsheng Liu, Xianghong Tang, Haibin Wang, Zhifeng Hao, Ze Shi, Gang Wang, Botao Jiang, Chunyang Liu
{"title":"通过快速去噪扩散隐含模型检测工业产品表面缺陷","authors":"Yue Wang, Yong Yang, Mingsheng Liu, Xianghong Tang, Haibin Wang, Zhifeng Hao, Ze Shi, Gang Wang, Botao Jiang, Chunyang Liu","doi":"10.1007/s13042-024-02213-4","DOIUrl":null,"url":null,"abstract":"<p>In the age of intelligent manufacturing, surface defect detection plays a pivotal role in the automated quality control of industrial products, constituting a fundamental aspect of smart factory evolution. Considering the diverse sizes and feature scales of surface defects on industrial products and the difficulty in procuring high-quality training samples, the achievement of real-time and high-quality surface defect detection through artificial intelligence technologies remains a formidable challenge. To address this, we introduce a defect detection approach grounded in the Fast Denoising Probabilistic Implicit Models. Firstly, we propose a noise predictor influenced by the spectral radius feature tensor of images. This enhancement augments the ability of generative model to capture nuanced details in non-defective areas, thus overcoming limitations in model versatility and detail portrayal. Furthermore, we present a loss function constraint based on the Perron-root. This is designed to incorporate the constraint within the representational space, ensuring the denoising model consistently produces high-quality samples. Lastly, comprehensive experiments on both the Magnetic Tile and Market-PCB datasets, benchmarked against nine most representative models, underscore the exemplary detection efficacy of our proposed approach.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial product surface defect detection via the fast denoising diffusion implicit model\",\"authors\":\"Yue Wang, Yong Yang, Mingsheng Liu, Xianghong Tang, Haibin Wang, Zhifeng Hao, Ze Shi, Gang Wang, Botao Jiang, Chunyang Liu\",\"doi\":\"10.1007/s13042-024-02213-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the age of intelligent manufacturing, surface defect detection plays a pivotal role in the automated quality control of industrial products, constituting a fundamental aspect of smart factory evolution. Considering the diverse sizes and feature scales of surface defects on industrial products and the difficulty in procuring high-quality training samples, the achievement of real-time and high-quality surface defect detection through artificial intelligence technologies remains a formidable challenge. To address this, we introduce a defect detection approach grounded in the Fast Denoising Probabilistic Implicit Models. Firstly, we propose a noise predictor influenced by the spectral radius feature tensor of images. This enhancement augments the ability of generative model to capture nuanced details in non-defective areas, thus overcoming limitations in model versatility and detail portrayal. Furthermore, we present a loss function constraint based on the Perron-root. This is designed to incorporate the constraint within the representational space, ensuring the denoising model consistently produces high-quality samples. Lastly, comprehensive experiments on both the Magnetic Tile and Market-PCB datasets, benchmarked against nine most representative models, underscore the exemplary detection efficacy of our proposed approach.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02213-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02213-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在智能制造时代,表面缺陷检测在工业产品的自动化质量控制中起着举足轻重的作用,是智能工厂演进的一个基本方面。考虑到工业产品表面缺陷的尺寸和特征尺度多种多样,且难以获得高质量的训练样本,通过人工智能技术实现实时、高质量的表面缺陷检测仍然是一项艰巨的挑战。为此,我们引入了一种基于快速去噪概率隐含模型的缺陷检测方法。首先,我们提出了一种受图像光谱半径特征张量影响的噪声预测器。这一改进增强了生成模型捕捉非缺陷区域细微细节的能力,从而克服了模型通用性和细节刻画方面的局限。此外,我们还提出了一种基于 Perron 根的损失函数约束。这样做的目的是将约束条件纳入表征空间,确保去噪模型始终能生成高质量的样本。最后,我们在磁瓦数据集和市场-PCB 数据集上进行了综合实验,以九种最具代表性的模型为基准,强调了我们提出的方法具有典范性的检测功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Industrial product surface defect detection via the fast denoising diffusion implicit model

Industrial product surface defect detection via the fast denoising diffusion implicit model

In the age of intelligent manufacturing, surface defect detection plays a pivotal role in the automated quality control of industrial products, constituting a fundamental aspect of smart factory evolution. Considering the diverse sizes and feature scales of surface defects on industrial products and the difficulty in procuring high-quality training samples, the achievement of real-time and high-quality surface defect detection through artificial intelligence technologies remains a formidable challenge. To address this, we introduce a defect detection approach grounded in the Fast Denoising Probabilistic Implicit Models. Firstly, we propose a noise predictor influenced by the spectral radius feature tensor of images. This enhancement augments the ability of generative model to capture nuanced details in non-defective areas, thus overcoming limitations in model versatility and detail portrayal. Furthermore, we present a loss function constraint based on the Perron-root. This is designed to incorporate the constraint within the representational space, ensuring the denoising model consistently produces high-quality samples. Lastly, comprehensive experiments on both the Magnetic Tile and Market-PCB datasets, benchmarked against nine most representative models, underscore the exemplary detection efficacy of our proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Machine Learning and Cybernetics
International Journal of Machine Learning and Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.90
自引率
10.70%
发文量
225
期刊介绍: Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. Key research areas to be covered by the journal include: Machine Learning for modeling interactions between systems Pattern Recognition technology to support discovery of system-environment interaction Control of system-environment interactions Biochemical interaction in biological and biologically-inspired systems Learning for improvement of communication schemes between systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信