用经典方法和机器学习方法估计双层随机图中流行病传播的参数

Ágnes Backhausz, Edit Bognár, Villő Csiszár, Damján Tárkányi, András Zempléni
{"title":"用经典方法和机器学习方法估计双层随机图中流行病传播的参数","authors":"Ágnes Backhausz, Edit Bognár, Villő Csiszár, Damján Tárkányi, András Zempléni","doi":"arxiv-2407.07118","DOIUrl":null,"url":null,"abstract":"Our main goal in this paper is to quantitatively compare the performance of\nclassical methods to XGBoost and convolutional neural networks in a parameter\nestimation problem for epidemic spread. As we use flexible two-layer random\ngraphs as the underlying network, we can also study how much the structure of\nthe graphs in the training set and the test set can differ while to get a\nreasonably good estimate. In addition, we also examine whether additional\ninformation (such as the average degree of infected vertices) can help\nimproving the results, compared to the case when we only know the time series\nconsisting of the number of susceptible and infected individuals. Our\nsimulation results also show which methods are most accurate in the different\nphases of the epidemic.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"28 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation of epidemic spread in two-layer random graphs by classical and machine learning methods\",\"authors\":\"Ágnes Backhausz, Edit Bognár, Villő Csiszár, Damján Tárkányi, András Zempléni\",\"doi\":\"arxiv-2407.07118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our main goal in this paper is to quantitatively compare the performance of\\nclassical methods to XGBoost and convolutional neural networks in a parameter\\nestimation problem for epidemic spread. As we use flexible two-layer random\\ngraphs as the underlying network, we can also study how much the structure of\\nthe graphs in the training set and the test set can differ while to get a\\nreasonably good estimate. In addition, we also examine whether additional\\ninformation (such as the average degree of infected vertices) can help\\nimproving the results, compared to the case when we only know the time series\\nconsisting of the number of susceptible and infected individuals. Our\\nsimulation results also show which methods are most accurate in the different\\nphases of the epidemic.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"28 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目标是定量比较经典方法与 XGBoost 和卷积神经网络在流行病传播参数估计问题中的性能。由于我们使用了灵活的双层随机图作为底层网络,因此我们还可以研究训练集和测试集中的图结构可以有多大差异,同时获得合理的良好估计。此外,与只知道由易感个体和受感染个体数量组成的时间序列的情况相比,我们还研究了附加信息(如受感染顶点的平均度)是否有助于改进结果。我们的模拟结果还显示了哪种方法在流行病的不同阶段最为准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation of epidemic spread in two-layer random graphs by classical and machine learning methods
Our main goal in this paper is to quantitatively compare the performance of classical methods to XGBoost and convolutional neural networks in a parameter estimation problem for epidemic spread. As we use flexible two-layer random graphs as the underlying network, we can also study how much the structure of the graphs in the training set and the test set can differ while to get a reasonably good estimate. In addition, we also examine whether additional information (such as the average degree of infected vertices) can help improving the results, compared to the case when we only know the time series consisting of the number of susceptible and infected individuals. Our simulation results also show which methods are most accurate in the different phases of the epidemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信