{"title":"关于 $$\\mathbb {Z}_{m}$$ 的差分基础","authors":"Yu Zhang","doi":"10.1007/s10998-024-00598-x","DOIUrl":null,"url":null,"abstract":"<p>For any positive integer <i>m</i>, let <span>\\(\\mathbb {Z}_m\\)</span> be the cyclic group of order <i>m</i>. For any subset <span>\\(A\\subseteq \\mathbb {Z}_{m}\\)</span> and any <span>\\(n\\in \\mathbb {Z}_{m}\\)</span>, let <span>\\(\\delta _{A}(n)=\\#\\{(a,b)|n=a-b, a\\in A, b\\in A\\}\\)</span>. In this paper, we prove that, for any positive integer <i>m</i>, there exists a subset <i>A</i> of <span>\\(\\mathbb {Z}_m\\)</span> such that <span>\\(\\delta _A (n)\\le 5\\)</span> for all <span>\\(n \\in \\mathbb {Z}_m\\)</span> with at most 3 exceptions, which improves a 2010 result of Y.–G. Chen & T. Sun.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the difference bases of $$\\\\mathbb {Z}_{m}$$\",\"authors\":\"Yu Zhang\",\"doi\":\"10.1007/s10998-024-00598-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any positive integer <i>m</i>, let <span>\\\\(\\\\mathbb {Z}_m\\\\)</span> be the cyclic group of order <i>m</i>. For any subset <span>\\\\(A\\\\subseteq \\\\mathbb {Z}_{m}\\\\)</span> and any <span>\\\\(n\\\\in \\\\mathbb {Z}_{m}\\\\)</span>, let <span>\\\\(\\\\delta _{A}(n)=\\\\#\\\\{(a,b)|n=a-b, a\\\\in A, b\\\\in A\\\\}\\\\)</span>. In this paper, we prove that, for any positive integer <i>m</i>, there exists a subset <i>A</i> of <span>\\\\(\\\\mathbb {Z}_m\\\\)</span> such that <span>\\\\(\\\\delta _A (n)\\\\le 5\\\\)</span> for all <span>\\\\(n \\\\in \\\\mathbb {Z}_m\\\\)</span> with at most 3 exceptions, which improves a 2010 result of Y.–G. Chen & T. Sun.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00598-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00598-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
对于任意正整数 m,让 \(\mathbb {Z}_m\) 是阶数为 m 的循环群。对于任意子集 \(A\subseteq \mathbb {Z}_{m}\) 和任意 \(n\in \mathbb {Z}_{m}\), 让 \(\delta _{A}(n)=\#\{(a,b)|n=a-b, a\in A, b\in A\}\).在本文中,我们证明了对于任意正整数 m,存在一个 \(\mathbb {Z}_m\) 的子集 A,使得 \(\delta _A (n)\le 5\) for all \(n \in \mathbb {Z}_m\) with at most 3 exceptions,这改进了 Y.-G. Chen & T. Sun 2010 年的一个结果。
For any positive integer m, let \(\mathbb {Z}_m\) be the cyclic group of order m. For any subset \(A\subseteq \mathbb {Z}_{m}\) and any \(n\in \mathbb {Z}_{m}\), let \(\delta _{A}(n)=\#\{(a,b)|n=a-b, a\in A, b\in A\}\). In this paper, we prove that, for any positive integer m, there exists a subset A of \(\mathbb {Z}_m\) such that \(\delta _A (n)\le 5\) for all \(n \in \mathbb {Z}_m\) with at most 3 exceptions, which improves a 2010 result of Y.–G. Chen & T. Sun.