非剪切欧拉流的稳定普朗特边界层扩展

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Chen Gao, Liqun Zhang
{"title":"非剪切欧拉流的稳定普朗特边界层扩展","authors":"Chen Gao, Liqun Zhang","doi":"10.1063/5.0192671","DOIUrl":null,"url":null,"abstract":"We continue the study on the validity of the Prandtl boundary layer expansions in [Gao et al., Sci. China Math. 66, 679–722 (2023)], whereby estimating the stream-function of the remainder, we proved the case when the Euler flow is the perturbation of shear flow in a narrow domain. In this paper, we obtain a new derivatives estimate of stream-function away from the boundary layer and then prove the validity of expansions for any non-shear Euler flow, provided that the width of the domain is small.","PeriodicalId":16174,"journal":{"name":"Journal of Mathematical Physics","volume":"39 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The steady Prandtl boundary layer expansions for non-shear Euler flow\",\"authors\":\"Chen Gao, Liqun Zhang\",\"doi\":\"10.1063/5.0192671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the study on the validity of the Prandtl boundary layer expansions in [Gao et al., Sci. China Math. 66, 679–722 (2023)], whereby estimating the stream-function of the remainder, we proved the case when the Euler flow is the perturbation of shear flow in a narrow domain. In this paper, we obtain a new derivatives estimate of stream-function away from the boundary layer and then prove the validity of expansions for any non-shear Euler flow, provided that the width of the domain is small.\",\"PeriodicalId\":16174,\"journal\":{\"name\":\"Journal of Mathematical Physics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0192671\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0192671","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们延续了[高志强等,中国科学,数学,66,679-722 (2023)]中对普朗特边界层展开有效性的研究,通过对余数流函数的估计,证明了当欧拉流是窄域中剪切流的扰动时的情况。在本文中,我们得到了远离边界层的流函数的新导数估计,然后证明了只要域宽较小,任何非剪切欧拉流的展开的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The steady Prandtl boundary layer expansions for non-shear Euler flow
We continue the study on the validity of the Prandtl boundary layer expansions in [Gao et al., Sci. China Math. 66, 679–722 (2023)], whereby estimating the stream-function of the remainder, we proved the case when the Euler flow is the perturbation of shear flow in a narrow domain. In this paper, we obtain a new derivatives estimate of stream-function away from the boundary layer and then prove the validity of expansions for any non-shear Euler flow, provided that the width of the domain is small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Physics
Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
2.20
自引率
15.40%
发文量
396
审稿时长
4.3 months
期刊介绍: Since 1960, the Journal of Mathematical Physics (JMP) has published some of the best papers from outstanding mathematicians and physicists. JMP was the first journal in the field of mathematical physics and publishes research that connects the application of mathematics to problems in physics, as well as illustrates the development of mathematical methods for such applications and for the formulation of physical theories. The Journal of Mathematical Physics (JMP) features content in all areas of mathematical physics. Specifically, the articles focus on areas of research that illustrate the application of mathematics to problems in physics, the development of mathematical methods for such applications, and for the formulation of physical theories. The mathematics featured in the articles are written so that theoretical physicists can understand them. JMP also publishes review articles on mathematical subjects relevant to physics as well as special issues that combine manuscripts on a topic of current interest to the mathematical physics community. JMP welcomes original research of the highest quality in all active areas of mathematical physics, including the following: Partial Differential Equations Representation Theory and Algebraic Methods Many Body and Condensed Matter Physics Quantum Mechanics - General and Nonrelativistic Quantum Information and Computation Relativistic Quantum Mechanics, Quantum Field Theory, Quantum Gravity, and String Theory General Relativity and Gravitation Dynamical Systems Classical Mechanics and Classical Fields Fluids Statistical Physics Methods of Mathematical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信