Baoping Zhu, Fan Yang, Hongliang Duan, Zhipeng Gao
{"title":"基于卷积神经网络和集合学习的胎儿超声图像标准平面自动检测技术","authors":"Baoping Zhu, Fan Yang, Hongliang Duan, Zhipeng Gao","doi":"10.2174/0115748936295679240620094626","DOIUrl":null,"url":null,"abstract":"aims: This study aims to leverage artificial intelligence for enhancing medical diagnosis, focusing on ultrasound evaluation of fetal development and detection of fetal diseases. background: Traditional diagnostic methods in ultrasound are known for being time-consuming and laborious, prompting the need for more efficient approaches. objective: The objective of this research is to develop an end-to-end automatic diagnosis system using convolutional neural networks with ensemble learning to enhance robustness and accuracy in classifying ultrasound images. method: The study involves constructing and implementing the automatic diagnosis system, training it on a diverse dataset encompassing six categories: abdomen, brain, femur, thorax, maternal cervix, and other planes. result: Experimental results demonstrate that the proposed end-to-end system significantly improves the detection accuracy of the standard plane in ultrasound images. conclusion: The application of artificial intelligence through an ensemble learning-based automatic diagnosis system shows promise in advancing ultrasound-based medical diagnosis, particularly in fetal development assessment. other: This research contributes to the ongoing efforts in leveraging technology for more efficient and accurate medical diagnostic processes.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Detection of Standard Planes in Fetal Ultrasound Images based on Convolutional Neural Networks and Ensemble Learning\",\"authors\":\"Baoping Zhu, Fan Yang, Hongliang Duan, Zhipeng Gao\",\"doi\":\"10.2174/0115748936295679240620094626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"aims: This study aims to leverage artificial intelligence for enhancing medical diagnosis, focusing on ultrasound evaluation of fetal development and detection of fetal diseases. background: Traditional diagnostic methods in ultrasound are known for being time-consuming and laborious, prompting the need for more efficient approaches. objective: The objective of this research is to develop an end-to-end automatic diagnosis system using convolutional neural networks with ensemble learning to enhance robustness and accuracy in classifying ultrasound images. method: The study involves constructing and implementing the automatic diagnosis system, training it on a diverse dataset encompassing six categories: abdomen, brain, femur, thorax, maternal cervix, and other planes. result: Experimental results demonstrate that the proposed end-to-end system significantly improves the detection accuracy of the standard plane in ultrasound images. conclusion: The application of artificial intelligence through an ensemble learning-based automatic diagnosis system shows promise in advancing ultrasound-based medical diagnosis, particularly in fetal development assessment. other: This research contributes to the ongoing efforts in leveraging technology for more efficient and accurate medical diagnostic processes.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936295679240620094626\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936295679240620094626","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Automatic Detection of Standard Planes in Fetal Ultrasound Images based on Convolutional Neural Networks and Ensemble Learning
aims: This study aims to leverage artificial intelligence for enhancing medical diagnosis, focusing on ultrasound evaluation of fetal development and detection of fetal diseases. background: Traditional diagnostic methods in ultrasound are known for being time-consuming and laborious, prompting the need for more efficient approaches. objective: The objective of this research is to develop an end-to-end automatic diagnosis system using convolutional neural networks with ensemble learning to enhance robustness and accuracy in classifying ultrasound images. method: The study involves constructing and implementing the automatic diagnosis system, training it on a diverse dataset encompassing six categories: abdomen, brain, femur, thorax, maternal cervix, and other planes. result: Experimental results demonstrate that the proposed end-to-end system significantly improves the detection accuracy of the standard plane in ultrasound images. conclusion: The application of artificial intelligence through an ensemble learning-based automatic diagnosis system shows promise in advancing ultrasound-based medical diagnosis, particularly in fetal development assessment. other: This research contributes to the ongoing efforts in leveraging technology for more efficient and accurate medical diagnostic processes.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.