特征 p 的微分扩展的自动形

IF 1.1 3区 数学 Q1 MATHEMATICS
S. Pumplün
{"title":"特征 p 的微分扩展的自动形","authors":"S. Pumplün","doi":"10.1007/s00025-024-02234-z","DOIUrl":null,"url":null,"abstract":"<p>Nonassociative differential extensions are generalizations of associative differential extensions, either of a purely inseparable field extension <i>K</i> of exponent one of a field <i>F</i>, <i>F</i> of characteristic <i>p</i>, or of a central division algebra over a purely inseparable field extension of <i>F</i>. Associative differential extensions are well known central simple algebras first defined by Amitsur and Jacobson. We explicitly compute the automorphisms of nonassociative differential extensions. These are canonically obtained by restricting automorphisms of the differential polynomial ring used in the construction of the algebra. In particular, we obtain descriptions for the automorphisms of associative differential extensions of <i>D</i> and <i>K</i>, which are known to be inner.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Automorphisms of Differential Extensions of Characteristic p\",\"authors\":\"S. Pumplün\",\"doi\":\"10.1007/s00025-024-02234-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonassociative differential extensions are generalizations of associative differential extensions, either of a purely inseparable field extension <i>K</i> of exponent one of a field <i>F</i>, <i>F</i> of characteristic <i>p</i>, or of a central division algebra over a purely inseparable field extension of <i>F</i>. Associative differential extensions are well known central simple algebras first defined by Amitsur and Jacobson. We explicitly compute the automorphisms of nonassociative differential extensions. These are canonically obtained by restricting automorphisms of the differential polynomial ring used in the construction of the algebra. In particular, we obtain descriptions for the automorphisms of associative differential extensions of <i>D</i> and <i>K</i>, which are known to be inner.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02234-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02234-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

非联立微分广延是联立微分广延的广义化,它可以是特征为 p 的域 F 的指数为 1 的纯不可分域广延 K,也可以是 F 的纯不可分域广延上的中心除法代数。联立微分广延是阿米曲尔和雅各布森首先定义的众所周知的中心简单代数。我们明确地计算了非联立微分扩展的自动形态。这些自动形是通过对构建代数时使用的微分多项式环的自动形进行限制而得到的。特别是,我们获得了 D 和 K 的关联微分扩展的自动形的描述,众所周知,关联微分扩展是内扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Automorphisms of Differential Extensions of Characteristic p

Nonassociative differential extensions are generalizations of associative differential extensions, either of a purely inseparable field extension K of exponent one of a field F, F of characteristic p, or of a central division algebra over a purely inseparable field extension of F. Associative differential extensions are well known central simple algebras first defined by Amitsur and Jacobson. We explicitly compute the automorphisms of nonassociative differential extensions. These are canonically obtained by restricting automorphisms of the differential polynomial ring used in the construction of the algebra. In particular, we obtain descriptions for the automorphisms of associative differential extensions of D and K, which are known to be inner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信