用更少的排列组合获得更大的能量

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2024-07-10 DOI:10.1093/biomet/asae031
Nick W Koning
{"title":"用更少的排列组合获得更大的能量","authors":"Nick W Koning","doi":"10.1093/biomet/asae031","DOIUrl":null,"url":null,"abstract":"Summary It is conventionally believed that permutation-based testing methods should ideally use all permutations. We challenge this by showing we can sometimes obtain dramatically more power by using a tiny subgroup. As the subgroup is tiny, this also comes at a much lower computational cost. Moreover, the method remains valid for the same hypotheses. We exploit this to improve the popular permutation-based Westfall & Young MaxT multiple testing method. We analyze the relative efficiency in a Gaussian location model, and find the largest gain in high dimensions.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"377 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"More Power by Using Fewer Permutations\",\"authors\":\"Nick W Koning\",\"doi\":\"10.1093/biomet/asae031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary It is conventionally believed that permutation-based testing methods should ideally use all permutations. We challenge this by showing we can sometimes obtain dramatically more power by using a tiny subgroup. As the subgroup is tiny, this also comes at a much lower computational cost. Moreover, the method remains valid for the same hypotheses. We exploit this to improve the popular permutation-based Westfall & Young MaxT multiple testing method. We analyze the relative efficiency in a Gaussian location model, and find the largest gain in high dimensions.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\"377 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asae031\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae031","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 传统观点认为,基于排列的检验方法最好使用所有排列。我们对这一观点提出了质疑,因为我们发现有时使用一个很小的子群就能获得更强的能力。由于子群很小,因此计算成本也低得多。此外,这种方法对相同的假设依然有效。我们利用这一点改进了流行的基于置换的 Westfall & Young MaxT 多重检验方法。我们分析了高斯位置模型中的相对效率,发现在高维度中的收益最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More Power by Using Fewer Permutations
Summary It is conventionally believed that permutation-based testing methods should ideally use all permutations. We challenge this by showing we can sometimes obtain dramatically more power by using a tiny subgroup. As the subgroup is tiny, this also comes at a much lower computational cost. Moreover, the method remains valid for the same hypotheses. We exploit this to improve the popular permutation-based Westfall & Young MaxT multiple testing method. We analyze the relative efficiency in a Gaussian location model, and find the largest gain in high dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信