接种过猴痘疫苗的人类传播能力受损的分数数学模型

A. Venkatesh, M. Manivel, K. Arunkumar, M. Prakash Raj, Shyamsunder, S. D. Purohit
{"title":"接种过猴痘疫苗的人类传播能力受损的分数数学模型","authors":"A. Venkatesh, M. Manivel, K. Arunkumar, M. Prakash Raj, Shyamsunder, S. D. Purohit","doi":"10.1140/epjs/s11734-024-01211-5","DOIUrl":null,"url":null,"abstract":"<p>This research develops a comprehensive numerical model leveraging fuzzy fractional differential equations to analyze the transmission dynamics of the Monkeypox virus. Using Caputo’s fuzzy fractional differential equations, we construct a dynamical model for Monkeypox vaccination in humans. The importance of fuzzy fractional differential equations lies in their ability to provide a more accurate representation of the transmission dynamics due to their non-local properties, which capture memory and hereditary effects inherent in the spread of infectious diseases. Our numerical simulations highlight how vaccination significantly curbs disease spread, demonstrating the practical application of fuzzy fractional techniques in epidemiology. The study underscores the necessity of these advanced mathematical tools in capturing the complex dynamics of Monkeypox transmission, paving the way for more effective control strategies.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fractional mathematical model for vaccinated humans with the impairment of Monkeypox transmission\",\"authors\":\"A. Venkatesh, M. Manivel, K. Arunkumar, M. Prakash Raj, Shyamsunder, S. D. Purohit\",\"doi\":\"10.1140/epjs/s11734-024-01211-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research develops a comprehensive numerical model leveraging fuzzy fractional differential equations to analyze the transmission dynamics of the Monkeypox virus. Using Caputo’s fuzzy fractional differential equations, we construct a dynamical model for Monkeypox vaccination in humans. The importance of fuzzy fractional differential equations lies in their ability to provide a more accurate representation of the transmission dynamics due to their non-local properties, which capture memory and hereditary effects inherent in the spread of infectious diseases. Our numerical simulations highlight how vaccination significantly curbs disease spread, demonstrating the practical application of fuzzy fractional techniques in epidemiology. The study underscores the necessity of these advanced mathematical tools in capturing the complex dynamics of Monkeypox transmission, paving the way for more effective control strategies.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01211-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01211-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用模糊分式微分方程建立了一个综合数值模型,用于分析猴痘病毒的传播动力学。利用卡普托模糊分数微分方程,我们构建了人类接种猴痘疫苗的动态模型。模糊分式微分方程的重要性在于,由于其非局部特性,它能够更准确地表示传播动态,捕捉到传染病传播过程中固有的记忆和遗传效应。我们的数值模拟突出了疫苗接种如何显著抑制疾病传播,展示了模糊分式技术在流行病学中的实际应用。这项研究强调了这些先进数学工具在捕捉猴痘传播的复杂动态方面的必要性,为制定更有效的控制策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A fractional mathematical model for vaccinated humans with the impairment of Monkeypox transmission

A fractional mathematical model for vaccinated humans with the impairment of Monkeypox transmission

This research develops a comprehensive numerical model leveraging fuzzy fractional differential equations to analyze the transmission dynamics of the Monkeypox virus. Using Caputo’s fuzzy fractional differential equations, we construct a dynamical model for Monkeypox vaccination in humans. The importance of fuzzy fractional differential equations lies in their ability to provide a more accurate representation of the transmission dynamics due to their non-local properties, which capture memory and hereditary effects inherent in the spread of infectious diseases. Our numerical simulations highlight how vaccination significantly curbs disease spread, demonstrating the practical application of fuzzy fractional techniques in epidemiology. The study underscores the necessity of these advanced mathematical tools in capturing the complex dynamics of Monkeypox transmission, paving the way for more effective control strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信