带人工边界条件的量子动力学量子模拟

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shi Jin, Xiantao Li, Nana Liu, Yue Yu
{"title":"带人工边界条件的量子动力学量子模拟","authors":"Shi Jin, Xiantao Li, Nana Liu, Yue Yu","doi":"10.1137/23m1563451","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B403-B421, August 2024. <br/> Abstract. Quantum dynamics, typically expressed in the form of a time-dependent Schrödinger equation with a Hermitian Hamiltonian, is a natural application for quantum computing. However, when simulating quantum dynamics that involves the emission of electrons, it is necessary to use artificial boundary conditions (ABCs) to confine the computation within a fixed domain. The introduction of ABCs alters the Hamiltonian structure of the dynamics, and existing quantum algorithms cannot be directly applied since the evolution is no longer unitary. The current paper utilizes a recently introduced Schrödingerization method that converts non-Hermitian dynamics into a Schrödinger form for the artificial boundary problems [S. Jin, N. Liu, and Y. Yu, Quantum Simulation of Partial Differential Equations via Schrödingerisation, preprint, arXiv:2212.13969, 2022], [S. Jin, N. Liu, and Y. Yu, Phys. Rev. A, 108 (2023), 032603]. We implement this method for three types of ABCs, including the complex absorbing potential technique, perfectly matched layer methods, and Dirichlet-to-Neumann approach. We analyze the query complexity of these algorithms and perform numerical experiments to demonstrate the validity of this approach. This helps to bridge the gap between available quantum algorithms and computational models for quantum dynamics in unbounded domains.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Simulation for Quantum Dynamics with Artificial Boundary Conditions\",\"authors\":\"Shi Jin, Xiantao Li, Nana Liu, Yue Yu\",\"doi\":\"10.1137/23m1563451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B403-B421, August 2024. <br/> Abstract. Quantum dynamics, typically expressed in the form of a time-dependent Schrödinger equation with a Hermitian Hamiltonian, is a natural application for quantum computing. However, when simulating quantum dynamics that involves the emission of electrons, it is necessary to use artificial boundary conditions (ABCs) to confine the computation within a fixed domain. The introduction of ABCs alters the Hamiltonian structure of the dynamics, and existing quantum algorithms cannot be directly applied since the evolution is no longer unitary. The current paper utilizes a recently introduced Schrödingerization method that converts non-Hermitian dynamics into a Schrödinger form for the artificial boundary problems [S. Jin, N. Liu, and Y. Yu, Quantum Simulation of Partial Differential Equations via Schrödingerisation, preprint, arXiv:2212.13969, 2022], [S. Jin, N. Liu, and Y. Yu, Phys. Rev. A, 108 (2023), 032603]. We implement this method for three types of ABCs, including the complex absorbing potential technique, perfectly matched layer methods, and Dirichlet-to-Neumann approach. We analyze the query complexity of these algorithms and perform numerical experiments to demonstrate the validity of this approach. This helps to bridge the gap between available quantum algorithms and computational models for quantum dynamics in unbounded domains.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1563451\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1563451","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 B403-B421 页,2024 年 8 月。 摘要量子动力学通常以具有赫米特哈密顿的时变薛定谔方程的形式表示,是量子计算的自然应用。然而,在模拟涉及电子发射的量子动力学时,有必要使用人工边界条件(ABC)将计算限制在一个固定的域内。ABC 的引入改变了动力学的哈密顿结构,现有的量子算法无法直接应用,因为演化不再是单一的。本文利用最近引入的薛定谔化方法,将非赫米态动力学转换为薛定谔形式,用于人工边界问题 [S. Jin, N. Liu, and Y. J., J., J., J., J., J., J., J., J., J., J., J., J., J., J., J., J., J.S. Jin, N. Liu, and Y. Yu, Quantum Simulation of Partial Differential Equations via Schrödingerisation, preprint, arXiv:2212.13969, 2022],[S. Jin, N. Liu, and Y. Yu, Phys. Rev. A, 108 (2023), 032603]。我们针对三种 ABC 实现了这种方法,包括复杂吸收势技术、完全匹配层方法和 Dirichlet 到 Neumann 方法。我们分析了这些算法的查询复杂度,并通过数值实验证明了这种方法的有效性。这有助于缩小现有量子算法与无界域量子动力学计算模型之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Simulation for Quantum Dynamics with Artificial Boundary Conditions
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page B403-B421, August 2024.
Abstract. Quantum dynamics, typically expressed in the form of a time-dependent Schrödinger equation with a Hermitian Hamiltonian, is a natural application for quantum computing. However, when simulating quantum dynamics that involves the emission of electrons, it is necessary to use artificial boundary conditions (ABCs) to confine the computation within a fixed domain. The introduction of ABCs alters the Hamiltonian structure of the dynamics, and existing quantum algorithms cannot be directly applied since the evolution is no longer unitary. The current paper utilizes a recently introduced Schrödingerization method that converts non-Hermitian dynamics into a Schrödinger form for the artificial boundary problems [S. Jin, N. Liu, and Y. Yu, Quantum Simulation of Partial Differential Equations via Schrödingerisation, preprint, arXiv:2212.13969, 2022], [S. Jin, N. Liu, and Y. Yu, Phys. Rev. A, 108 (2023), 032603]. We implement this method for three types of ABCs, including the complex absorbing potential technique, perfectly matched layer methods, and Dirichlet-to-Neumann approach. We analyze the query complexity of these algorithms and perform numerical experiments to demonstrate the validity of this approach. This helps to bridge the gap between available quantum algorithms and computational models for quantum dynamics in unbounded domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信