任何多边形方程的矩阵解

Zheyan Wan
{"title":"任何多边形方程的矩阵解","authors":"Zheyan Wan","doi":"arxiv-2407.07131","DOIUrl":null,"url":null,"abstract":"In this article, we construct matrices associated to Pachner\n$\\frac{n-1}{2}$-$\\frac{n-1}{2}$ moves for odd $n$ and matrices associated to\nPachner $(\\frac{n}{2}-1)$-$\\frac{n}{2}$ moves for even $n$. The entries of\nthese matrices are rational functions of formal variables in a field. We prove\nthat these matrices satisfy the $n$-gon equation for any $n$.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A matrix solution to any polygon equation\",\"authors\":\"Zheyan Wan\",\"doi\":\"arxiv-2407.07131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we construct matrices associated to Pachner\\n$\\\\frac{n-1}{2}$-$\\\\frac{n-1}{2}$ moves for odd $n$ and matrices associated to\\nPachner $(\\\\frac{n}{2}-1)$-$\\\\frac{n}{2}$ moves for even $n$. The entries of\\nthese matrices are rational functions of formal variables in a field. We prove\\nthat these matrices satisfy the $n$-gon equation for any $n$.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了奇数$n$时与帕奇纳$\frac{n-1}{2}$-$\frac{n-1}{2}$棋步相关的矩阵,以及偶数$n$时与帕奇纳$(\frac{n}{2}-1)$-$\frac{n}{2}$棋步相关的矩阵。这些矩阵的条目是域中形式变量的有理函数。我们证明这些矩阵满足任意 $n$ 的 $n$ 冈方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A matrix solution to any polygon equation
In this article, we construct matrices associated to Pachner $\frac{n-1}{2}$-$\frac{n-1}{2}$ moves for odd $n$ and matrices associated to Pachner $(\frac{n}{2}-1)$-$\frac{n}{2}$ moves for even $n$. The entries of these matrices are rational functions of formal variables in a field. We prove that these matrices satisfy the $n$-gon equation for any $n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信