{"title":"关于连块多面体","authors":"Justus Bruckamp, Markus Chimani, Martina Juhnke","doi":"10.1007/s00454-024-00675-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the connected blocks polytope, which, apart from its own merits, can be seen as the generalization of certain connectivity based or Eulerian subgraph polytopes. We provide a complete facet description of this polytope, characterize its edges and show that it is Hirsch. We also show that connected blocks polytopes admit a regular unimodular triangulation by constructing a squarefree Gröbner basis. In addition, we prove that the polytope is Gorenstein of index 2 and that its <span>\\(h^*\\)</span>-vector is unimodal.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Connected Blocks Polytope\",\"authors\":\"Justus Bruckamp, Markus Chimani, Martina Juhnke\",\"doi\":\"10.1007/s00454-024-00675-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the connected blocks polytope, which, apart from its own merits, can be seen as the generalization of certain connectivity based or Eulerian subgraph polytopes. We provide a complete facet description of this polytope, characterize its edges and show that it is Hirsch. We also show that connected blocks polytopes admit a regular unimodular triangulation by constructing a squarefree Gröbner basis. In addition, we prove that the polytope is Gorenstein of index 2 and that its <span>\\\\(h^*\\\\)</span>-vector is unimodal.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00675-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00675-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we study the connected blocks polytope, which, apart from its own merits, can be seen as the generalization of certain connectivity based or Eulerian subgraph polytopes. We provide a complete facet description of this polytope, characterize its edges and show that it is Hirsch. We also show that connected blocks polytopes admit a regular unimodular triangulation by constructing a squarefree Gröbner basis. In addition, we prove that the polytope is Gorenstein of index 2 and that its \(h^*\)-vector is unimodal.