关于连块多面体

Pub Date : 2024-07-11 DOI:10.1007/s00454-024-00675-5
Justus Bruckamp, Markus Chimani, Martina Juhnke
{"title":"关于连块多面体","authors":"Justus Bruckamp, Markus Chimani, Martina Juhnke","doi":"10.1007/s00454-024-00675-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the connected blocks polytope, which, apart from its own merits, can be seen as the generalization of certain connectivity based or Eulerian subgraph polytopes. We provide a complete facet description of this polytope, characterize its edges and show that it is Hirsch. We also show that connected blocks polytopes admit a regular unimodular triangulation by constructing a squarefree Gröbner basis. In addition, we prove that the polytope is Gorenstein of index 2 and that its <span>\\(h^*\\)</span>-vector is unimodal.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Connected Blocks Polytope\",\"authors\":\"Justus Bruckamp, Markus Chimani, Martina Juhnke\",\"doi\":\"10.1007/s00454-024-00675-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the connected blocks polytope, which, apart from its own merits, can be seen as the generalization of certain connectivity based or Eulerian subgraph polytopes. We provide a complete facet description of this polytope, characterize its edges and show that it is Hirsch. We also show that connected blocks polytopes admit a regular unimodular triangulation by constructing a squarefree Gröbner basis. In addition, we prove that the polytope is Gorenstein of index 2 and that its <span>\\\\(h^*\\\\)</span>-vector is unimodal.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00675-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00675-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的是连通块多面体,它除了本身的优点外,还可以看作是某些基于连通性或欧拉子图多面体的概括。我们提供了该多面体的完整面描述,描述了它的边的特征,并证明它是赫氏多面体。我们还通过构建无平方格罗伯纳基证明了连通块状多面体具有规则的单模态三角剖分。此外,我们还证明了这个多面体是指数为 2 的 Gorenstein 多面体,而且它的\(h^*\)向量是单模态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Connected Blocks Polytope

分享
查看原文
On the Connected Blocks Polytope

In this paper, we study the connected blocks polytope, which, apart from its own merits, can be seen as the generalization of certain connectivity based or Eulerian subgraph polytopes. We provide a complete facet description of this polytope, characterize its edges and show that it is Hirsch. We also show that connected blocks polytopes admit a regular unimodular triangulation by constructing a squarefree Gröbner basis. In addition, we prove that the polytope is Gorenstein of index 2 and that its \(h^*\)-vector is unimodal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信