多层超软硅薄膜的粘附控制各向异性旋转成型

IF 3.2 4区 工程技术 Q2 ENGINEERING, CHEMICAL
Anke Kaufmann, Samuel Schlicht, Uta Rösel, Dietmar Drummer
{"title":"多层超软硅薄膜的粘附控制各向异性旋转成型","authors":"Anke Kaufmann, Samuel Schlicht, Uta Rösel, Dietmar Drummer","doi":"10.1002/pen.26869","DOIUrl":null,"url":null,"abstract":"<jats:label/>Rotational molding allows the manufacturing of geometrically complex, hollow parts while maintaining low tool costs. While the rotational molding of thermoplastics is subject to inherent limitations regarding the wall thickness and processing of ultrasoft materials, the present paper introduces the adhesion‐controlled, highly dynamic rotational molding of room‐temperature curing resins, enabling the fabrication of thin, multilayered films and anisotropic, ultrasoft silicone components at rotational speeds up to 2000 min<jats:sup>−1</jats:sup>. The studies comprise the influence of the applied rotational speeds and the different molds. Based on scanning electron micrographs, the process is shown to allow for locally tailored part thicknesses, enabling the manufacturing of multilayered films with singular layers obtaining thicknesses below 10 μm. Relying on the control of emerging centripetal forces, the rotational speed depicts a quasi‐linear influence on resulting layer thicknesses, allowing for controlling the film thickness with excellent interlayer bonding. Relying on the superposition of consecutive layers, the adhesion‐controlled process allows for tailoring emerging nonlinear, ultrasoft stress–strain behaviors across a broad range of desired moduli. Conducting compression tests, increased rotational speeds are shown to reduce the part stiffness, attributed to the increased relative influence of interlayer interfaces, allowing for reproducing mechanical characteristics similarly found in ultrasoft human soft tissue.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Highly dynamic rotational molding of ultrasoft thin films.</jats:list-item> <jats:list-item>Targeted anisotropic structure formation.</jats:list-item> <jats:list-item>High geometric accuracy and reproducibility of thin silicone films.</jats:list-item> <jats:list-item>Targeted adaptability of nonlinear compressive mechanical properties.</jats:list-item> <jats:list-item>Applicability for ultrasoft laryngeal implants.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"23 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adhesion‐controlled anisotropic rotational molding of multilayered ultrasoft silicone films\",\"authors\":\"Anke Kaufmann, Samuel Schlicht, Uta Rösel, Dietmar Drummer\",\"doi\":\"10.1002/pen.26869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>Rotational molding allows the manufacturing of geometrically complex, hollow parts while maintaining low tool costs. While the rotational molding of thermoplastics is subject to inherent limitations regarding the wall thickness and processing of ultrasoft materials, the present paper introduces the adhesion‐controlled, highly dynamic rotational molding of room‐temperature curing resins, enabling the fabrication of thin, multilayered films and anisotropic, ultrasoft silicone components at rotational speeds up to 2000 min<jats:sup>−1</jats:sup>. The studies comprise the influence of the applied rotational speeds and the different molds. Based on scanning electron micrographs, the process is shown to allow for locally tailored part thicknesses, enabling the manufacturing of multilayered films with singular layers obtaining thicknesses below 10 μm. Relying on the control of emerging centripetal forces, the rotational speed depicts a quasi‐linear influence on resulting layer thicknesses, allowing for controlling the film thickness with excellent interlayer bonding. Relying on the superposition of consecutive layers, the adhesion‐controlled process allows for tailoring emerging nonlinear, ultrasoft stress–strain behaviors across a broad range of desired moduli. Conducting compression tests, increased rotational speeds are shown to reduce the part stiffness, attributed to the increased relative influence of interlayer interfaces, allowing for reproducing mechanical characteristics similarly found in ultrasoft human soft tissue.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Highly dynamic rotational molding of ultrasoft thin films.</jats:list-item> <jats:list-item>Targeted anisotropic structure formation.</jats:list-item> <jats:list-item>High geometric accuracy and reproducibility of thin silicone films.</jats:list-item> <jats:list-item>Targeted adaptability of nonlinear compressive mechanical properties.</jats:list-item> <jats:list-item>Applicability for ultrasoft laryngeal implants.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26869\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26869","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

旋转成型技术可以制造几何形状复杂的中空零件,同时保持较低的工具成本。热塑性塑料的旋转成型在壁厚和超软材料的加工方面受到固有的限制,而本文介绍了室温固化树脂的粘附控制、高动态旋转成型,可以在高达 2000 min-1 的旋转速度下制造薄的多层薄膜和各向异性的超软硅树脂部件。研究包括应用的旋转速度和不同模具的影响。根据扫描电子显微照片显示,该工艺可实现局部定制部件厚度,从而制造出单层厚度低于 10 μm 的多层薄膜。依靠对新出现的向心力的控制,旋转速度对所产生的层厚度具有准线性影响,从而可以控制薄膜厚度,并实现出色的层间结合。依靠连续层的叠加,粘附力控制工艺可在广泛的所需模量范围内定制新出现的非线性超软应力应变行为。在压缩测试中,由于层间界面的相对影响增大,旋转速度的增加会降低部件刚度,从而重现类似于超软人体软组织的机械特性。有针对性地形成各向异性结构。硅胶薄膜的高几何精度和可重复性。非线性压缩机械性能的目标适应性。适用于超软喉部植入物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adhesion‐controlled anisotropic rotational molding of multilayered ultrasoft silicone films
Rotational molding allows the manufacturing of geometrically complex, hollow parts while maintaining low tool costs. While the rotational molding of thermoplastics is subject to inherent limitations regarding the wall thickness and processing of ultrasoft materials, the present paper introduces the adhesion‐controlled, highly dynamic rotational molding of room‐temperature curing resins, enabling the fabrication of thin, multilayered films and anisotropic, ultrasoft silicone components at rotational speeds up to 2000 min−1. The studies comprise the influence of the applied rotational speeds and the different molds. Based on scanning electron micrographs, the process is shown to allow for locally tailored part thicknesses, enabling the manufacturing of multilayered films with singular layers obtaining thicknesses below 10 μm. Relying on the control of emerging centripetal forces, the rotational speed depicts a quasi‐linear influence on resulting layer thicknesses, allowing for controlling the film thickness with excellent interlayer bonding. Relying on the superposition of consecutive layers, the adhesion‐controlled process allows for tailoring emerging nonlinear, ultrasoft stress–strain behaviors across a broad range of desired moduli. Conducting compression tests, increased rotational speeds are shown to reduce the part stiffness, attributed to the increased relative influence of interlayer interfaces, allowing for reproducing mechanical characteristics similarly found in ultrasoft human soft tissue.Highlights Highly dynamic rotational molding of ultrasoft thin films. Targeted anisotropic structure formation. High geometric accuracy and reproducibility of thin silicone films. Targeted adaptability of nonlinear compressive mechanical properties. Applicability for ultrasoft laryngeal implants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Engineering and Science
Polymer Engineering and Science 工程技术-高分子科学
CiteScore
5.40
自引率
18.80%
发文量
329
审稿时长
3.7 months
期刊介绍: For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信