在贝叶斯逆问题中选择观测操作符以减少模型误差

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Nada Cvetković, Han Cheng Lie, Harshit Bansal, Karen Veroy
{"title":"在贝叶斯逆问题中选择观测操作符以减少模型误差","authors":"Nada Cvetković, Han Cheng Lie, Harshit Bansal, Karen Veroy","doi":"10.1137/23m1602140","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 723-758, September 2024. <br/> Abstract.In statistical inference, a discrepancy between the parameter-to-observable map that generates the data and the parameter-to-observable map that is used for inference can lead to misspecified likelihoods and thus to incorrect estimates. In many inverse problems, the parameter-to-observable map is the composition of a linear state-to-observable map called an “observation operator” and a possibly nonlinear parameter-to-state map called the “model.” We consider such Bayesian inverse problems where the discrepancy in the parameter-to-observable map is due to the use of an approximate model that differs from the best model, i.e., to nonzero “model error.” Multiple approaches have been proposed to address such discrepancies, each leading to a specific posterior. We show how to use local Lipschitz stability estimates of posteriors with respect to likelihood perturbations to bound the Kullback–Leibler divergence of the posterior of each approach with respect to the posterior associated to the best model. Our bounds lead to criteria for choosing observation operators that mitigate the effect of model error for Bayesian inverse problems of this type. We illustrate the feasibility of one such criterion on an advection-diffusion-reaction PDE inverse problem and use this example to discuss the importance and challenges of model error-aware inference.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choosing Observation Operators to Mitigate Model Error in Bayesian Inverse Problems\",\"authors\":\"Nada Cvetković, Han Cheng Lie, Harshit Bansal, Karen Veroy\",\"doi\":\"10.1137/23m1602140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 723-758, September 2024. <br/> Abstract.In statistical inference, a discrepancy between the parameter-to-observable map that generates the data and the parameter-to-observable map that is used for inference can lead to misspecified likelihoods and thus to incorrect estimates. In many inverse problems, the parameter-to-observable map is the composition of a linear state-to-observable map called an “observation operator” and a possibly nonlinear parameter-to-state map called the “model.” We consider such Bayesian inverse problems where the discrepancy in the parameter-to-observable map is due to the use of an approximate model that differs from the best model, i.e., to nonzero “model error.” Multiple approaches have been proposed to address such discrepancies, each leading to a specific posterior. We show how to use local Lipschitz stability estimates of posteriors with respect to likelihood perturbations to bound the Kullback–Leibler divergence of the posterior of each approach with respect to the posterior associated to the best model. Our bounds lead to criteria for choosing observation operators that mitigate the effect of model error for Bayesian inverse problems of this type. We illustrate the feasibility of one such criterion on an advection-diffusion-reaction PDE inverse problem and use this example to discuss the importance and challenges of model error-aware inference.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1602140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/23m1602140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA《不确定性量化期刊》,第12卷,第3期,第723-758页,2024年9月。 摘要.在统计推断中,生成数据的参数-可观测映射与用于推断的参数-可观测映射之间的差异会导致似然值的错误规范,从而导致不正确的估计。在许多反演问题中,参数-可观测映射是一个称为 "观测算子 "的线性状态-可观测映射和一个称为 "模型 "的可能非线性参数-状态映射的组合。我们考虑的这类贝叶斯逆问题中,参数到可观测图的差异是由于使用了与最佳模型不同的近似模型,即非零 "模型误差 "造成的。为解决这种差异,人们提出了多种方法,每种方法都会导致特定的后验。我们展示了如何利用后验相对于似然扰动的局部 Lipschitz 稳定性估计来约束每种方法的后验相对于最佳模型相关后验的 Kullback-Leibler 分歧。我们的界限为选择观测算子提供了标准,从而减轻了贝叶斯逆问题中模型误差的影响。我们在一个平流-扩散-反应 PDE 逆问题上说明了这种标准的可行性,并用这个例子讨论了模型误差感知推理的重要性和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Choosing Observation Operators to Mitigate Model Error in Bayesian Inverse Problems
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 3, Page 723-758, September 2024.
Abstract.In statistical inference, a discrepancy between the parameter-to-observable map that generates the data and the parameter-to-observable map that is used for inference can lead to misspecified likelihoods and thus to incorrect estimates. In many inverse problems, the parameter-to-observable map is the composition of a linear state-to-observable map called an “observation operator” and a possibly nonlinear parameter-to-state map called the “model.” We consider such Bayesian inverse problems where the discrepancy in the parameter-to-observable map is due to the use of an approximate model that differs from the best model, i.e., to nonzero “model error.” Multiple approaches have been proposed to address such discrepancies, each leading to a specific posterior. We show how to use local Lipschitz stability estimates of posteriors with respect to likelihood perturbations to bound the Kullback–Leibler divergence of the posterior of each approach with respect to the posterior associated to the best model. Our bounds lead to criteria for choosing observation operators that mitigate the effect of model error for Bayesian inverse problems of this type. We illustrate the feasibility of one such criterion on an advection-diffusion-reaction PDE inverse problem and use this example to discuss the importance and challenges of model error-aware inference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信