用隐变分形函数逼近双变量利普齐兹连续函数

Vijender Nallapu
{"title":"用隐变分形函数逼近双变量利普齐兹连续函数","authors":"Vijender Nallapu","doi":"10.1007/s13226-024-00631-2","DOIUrl":null,"url":null,"abstract":"<p>The crux of the present paper is approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions. We propose the construction of hidden variable fractal perturbation associated with a given bivariate Lipschitz continuous function defined on a rectangle <span>\\(\\mathcal {D}\\)</span> in the Euclidean space. This procedure yields a fractal operator on the space of all <span>\\(\\mathbb {R}^2\\)</span>-valued Lipschitz continuous functions defined on a rectangle <span>\\(\\mathcal {D}\\)</span>. Some basic and important properties of this fractal operator will be discussed. Subsequently, we extend this fractal operator to the norm preserving bounded linear operator on the the space of all <span>\\(\\mathbb {R}^2\\)</span>-valued continuous functions defined on a rectangle <span>\\(\\mathcal {D}\\)</span>. We investigate the stability of hidden variable fractal functions with respect to a perturbation in the scaling factors. Finally, existence of optimal hidden variable fractal function which approximates the given bivariate Lipschitz continuous function is discussed.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions\",\"authors\":\"Vijender Nallapu\",\"doi\":\"10.1007/s13226-024-00631-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The crux of the present paper is approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions. We propose the construction of hidden variable fractal perturbation associated with a given bivariate Lipschitz continuous function defined on a rectangle <span>\\\\(\\\\mathcal {D}\\\\)</span> in the Euclidean space. This procedure yields a fractal operator on the space of all <span>\\\\(\\\\mathbb {R}^2\\\\)</span>-valued Lipschitz continuous functions defined on a rectangle <span>\\\\(\\\\mathcal {D}\\\\)</span>. Some basic and important properties of this fractal operator will be discussed. Subsequently, we extend this fractal operator to the norm preserving bounded linear operator on the the space of all <span>\\\\(\\\\mathbb {R}^2\\\\)</span>-valued continuous functions defined on a rectangle <span>\\\\(\\\\mathcal {D}\\\\)</span>. We investigate the stability of hidden variable fractal functions with respect to a perturbation in the scaling factors. Finally, existence of optimal hidden variable fractal function which approximates the given bivariate Lipschitz continuous function is discussed.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00631-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00631-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的核心是用隐变量分形函数逼近双变量利普齐兹连续函数。我们提出构建与欧几里得空间中矩形(\mathcal {D}\)上定义的给定双变量 Lipschitz 连续函数相关的隐变量分形扰动。这个过程在所有定义在矩形(\mathcal {D})上的(\mathbb {R}^2\)值利普茨连续函数的空间上产生了一个分形算子。我们将讨论这个分形算子的一些基本和重要性质。随后,我们将这个分形算子扩展到定义在矩形(\mathcal {D})上的所有\(\mathbb {R}^2\)-valued continuous functions 的空间上的 norm preserving 有界线性算子。我们研究了隐藏变量分形函数相对于缩放因子扰动的稳定性。最后,我们讨论了逼近给定双变量 Lipschitz 连续函数的最优隐变量分形函数的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions

The crux of the present paper is approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions. We propose the construction of hidden variable fractal perturbation associated with a given bivariate Lipschitz continuous function defined on a rectangle \(\mathcal {D}\) in the Euclidean space. This procedure yields a fractal operator on the space of all \(\mathbb {R}^2\)-valued Lipschitz continuous functions defined on a rectangle \(\mathcal {D}\). Some basic and important properties of this fractal operator will be discussed. Subsequently, we extend this fractal operator to the norm preserving bounded linear operator on the the space of all \(\mathbb {R}^2\)-valued continuous functions defined on a rectangle \(\mathcal {D}\). We investigate the stability of hidden variable fractal functions with respect to a perturbation in the scaling factors. Finally, existence of optimal hidden variable fractal function which approximates the given bivariate Lipschitz continuous function is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信