Volterra 型二维分数积分微分方程的稳健数值方案

Bappa Ghosh, Jugal Mohapatra
{"title":"Volterra 型二维分数积分微分方程的稳健数值方案","authors":"Bappa Ghosh, Jugal Mohapatra","doi":"10.1007/s13226-024-00666-5","DOIUrl":null,"url":null,"abstract":"<p>This article provides a numerical study of two-dimensional Volterra integro-differential equations involving fractional derivatives in the Caputo sense of order <span>\\( \\alpha ,\\gamma \\)</span> <span>\\( (0&lt; \\alpha ,\\gamma &lt;1). \\)</span> First, we establish a sufficient condition for the existence and uniqueness of the solution using the Banach fixed point theorem. Due to the limitation of finding the exact analytical solution, we derive and analyze an efficient numerical scheme to approximate the solution. The proposed scheme uses the L1 technique to discretize the differential components, whereas a composite trapezoidal rule is used to approximate the double integral. The convergence analysis and error estimation are carried out. It is shown that the proposed scheme converges with an optimal convergence rate of <span>\\( \\min \\{2-\\alpha ,2-\\gamma \\} \\)</span> for sufficiently smooth initial data. In addition, we apply the proposed difference scheme to solve the semilinear problem. The well-known Newton’s linearization technique is used to deal with semilinearity. Finally, a couple of numerical experiments are conducted to support our theoretical findings and validate the proposed scheme.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust numerical scheme for 2D fractional integro-differential equations of Volterra type\",\"authors\":\"Bappa Ghosh, Jugal Mohapatra\",\"doi\":\"10.1007/s13226-024-00666-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article provides a numerical study of two-dimensional Volterra integro-differential equations involving fractional derivatives in the Caputo sense of order <span>\\\\( \\\\alpha ,\\\\gamma \\\\)</span> <span>\\\\( (0&lt; \\\\alpha ,\\\\gamma &lt;1). \\\\)</span> First, we establish a sufficient condition for the existence and uniqueness of the solution using the Banach fixed point theorem. Due to the limitation of finding the exact analytical solution, we derive and analyze an efficient numerical scheme to approximate the solution. The proposed scheme uses the L1 technique to discretize the differential components, whereas a composite trapezoidal rule is used to approximate the double integral. The convergence analysis and error estimation are carried out. It is shown that the proposed scheme converges with an optimal convergence rate of <span>\\\\( \\\\min \\\\{2-\\\\alpha ,2-\\\\gamma \\\\} \\\\)</span> for sufficiently smooth initial data. In addition, we apply the proposed difference scheme to solve the semilinear problem. The well-known Newton’s linearization technique is used to deal with semilinearity. Finally, a couple of numerical experiments are conducted to support our theoretical findings and validate the proposed scheme.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00666-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00666-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了对二维 Volterra 积分微分方程的数值研究,该方程涉及 Caputo 意义上的分数导数,阶数为(0< \alpha ,\gamma <1)。\)首先,我们利用巴拿赫定点定理建立了解的存在性和唯一性的充分条件。由于寻找精确解析解的局限性,我们推导并分析了一种高效的数值方案来近似求解。所提出的方案使用 L1 技术对微分成分进行离散化,同时使用复合梯形法则对双积分进行近似。对该方案进行了收敛分析和误差估计。结果表明,在初始数据足够平滑的情况下,所提方案的最佳收敛速率为 \( \min \{2-\alpha ,2-\gamma \} \)。此外,我们还应用所提出的差分方案来解决半线性问题。著名的牛顿线性化技术被用来处理半线性问题。最后,我们进行了一些数值实验,以支持我们的理论发现并验证所提出的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust numerical scheme for 2D fractional integro-differential equations of Volterra type

Robust numerical scheme for 2D fractional integro-differential equations of Volterra type

This article provides a numerical study of two-dimensional Volterra integro-differential equations involving fractional derivatives in the Caputo sense of order \( \alpha ,\gamma \) \( (0< \alpha ,\gamma <1). \) First, we establish a sufficient condition for the existence and uniqueness of the solution using the Banach fixed point theorem. Due to the limitation of finding the exact analytical solution, we derive and analyze an efficient numerical scheme to approximate the solution. The proposed scheme uses the L1 technique to discretize the differential components, whereas a composite trapezoidal rule is used to approximate the double integral. The convergence analysis and error estimation are carried out. It is shown that the proposed scheme converges with an optimal convergence rate of \( \min \{2-\alpha ,2-\gamma \} \) for sufficiently smooth initial data. In addition, we apply the proposed difference scheme to solve the semilinear problem. The well-known Newton’s linearization technique is used to deal with semilinearity. Finally, a couple of numerical experiments are conducted to support our theoretical findings and validate the proposed scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信