{"title":"具有均匀连续系数的 G 布朗运动驱动的双反射后向随机微分方程","authors":"Shengqiu Sun","doi":"10.1007/s10959-024-01358-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider doubly reflected backward stochastic differential equations driven by <i>G</i>-Brownian motion with uniformly continuous coefficients. The existence of solutions can be obtained by a monotone convergence argument, a linearization method, a penalization method and the method of Picard iteration.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients\",\"authors\":\"Shengqiu Sun\",\"doi\":\"10.1007/s10959-024-01358-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider doubly reflected backward stochastic differential equations driven by <i>G</i>-Brownian motion with uniformly continuous coefficients. The existence of solutions can be obtained by a monotone convergence argument, a linearization method, a penalization method and the method of Picard iteration.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01358-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01358-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑由均匀连续系数的 G 布朗运动驱动的双反射后向随机微分方程。解的存在性可以通过单调收敛论证、线性化方法、惩罚法和 Picard 迭代法得到。
Doubly Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients
In this paper, we consider doubly reflected backward stochastic differential equations driven by G-Brownian motion with uniformly continuous coefficients. The existence of solutions can be obtained by a monotone convergence argument, a linearization method, a penalization method and the method of Picard iteration.