通过符号-数字计算进行区间代数曲线插值

Lydia Dehbi, Zhengfeng Yang, Chao Peng, Yaochen Xu, Zhenbing Zeng
{"title":"通过符号-数字计算进行区间代数曲线插值","authors":"Lydia Dehbi, Zhengfeng Yang, Chao Peng, Yaochen Xu, Zhenbing Zeng","doi":"arxiv-2407.07095","DOIUrl":null,"url":null,"abstract":"Algebraic curve interpolation is described by specifying the location of N\npoints in the plane and constructing an algebraic curve of a function f that\nshould pass through them. In this paper, we propose a novel approach to\nconstruct the algebraic curve that interpolates a set of data (points or\nneighborhoods). This approach aims to search the polynomial with the smallest\ndegree interpolating the given data. Moreover, the paper also presents an\nefficient method to reconstruct the algebraic curve of integer coefficients\nwith the smallest degree and the least monomials that interpolates the provided\ndata. The problems are converted into optimization problems and are solved via\nLagrange multipliers methods and symbolic computation. Various examples are\npresented to illustrate the proposed approaches.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic Curve Interpolation for Intervals via Symbolic-Numeric Computation\",\"authors\":\"Lydia Dehbi, Zhengfeng Yang, Chao Peng, Yaochen Xu, Zhenbing Zeng\",\"doi\":\"arxiv-2407.07095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algebraic curve interpolation is described by specifying the location of N\\npoints in the plane and constructing an algebraic curve of a function f that\\nshould pass through them. In this paper, we propose a novel approach to\\nconstruct the algebraic curve that interpolates a set of data (points or\\nneighborhoods). This approach aims to search the polynomial with the smallest\\ndegree interpolating the given data. Moreover, the paper also presents an\\nefficient method to reconstruct the algebraic curve of integer coefficients\\nwith the smallest degree and the least monomials that interpolates the provided\\ndata. The problems are converted into optimization problems and are solved via\\nLagrange multipliers methods and symbolic computation. Various examples are\\npresented to illustrate the proposed approaches.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代数曲线插值是通过指定平面上 N 个点的位置,并构造一条应通过这些点的函数 f 的代数曲线来描述的。在本文中,我们提出了一种新方法来构建代数曲线,以插值一组数据(点或邻域)。这种方法旨在搜索与给定数据插值的最小度多项式。此外,本文还提出了一种高效的方法,用于重构整数系数最小、单项式最少的代数曲线,以对所给数据进行插值。这些问题被转化为优化问题,并通过拉格朗日乘法器方法和符号计算加以解决。本文列举了各种实例来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic Curve Interpolation for Intervals via Symbolic-Numeric Computation
Algebraic curve interpolation is described by specifying the location of N points in the plane and constructing an algebraic curve of a function f that should pass through them. In this paper, we propose a novel approach to construct the algebraic curve that interpolates a set of data (points or neighborhoods). This approach aims to search the polynomial with the smallest degree interpolating the given data. Moreover, the paper also presents an efficient method to reconstruct the algebraic curve of integer coefficients with the smallest degree and the least monomials that interpolates the provided data. The problems are converted into optimization problems and are solved via Lagrange multipliers methods and symbolic computation. Various examples are presented to illustrate the proposed approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信