平移面最小层上 KVol 的下限

IF 0.5 4区 数学 Q3 MATHEMATICS
Julien Boulanger
{"title":"平移面最小层上 KVol 的下限","authors":"Julien Boulanger","doi":"10.1007/s10711-024-00937-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper we are interested in algebraic intersection of closed curves of a given length on translation surfaces. We study the quantity KVol, defined in Cheboui et al. (Bull Soc Math France 149(4):613–640, 2021) and studied in Cheboui et al. (2021), Cheboui et al. (C R Math Acad Sci Paris 359:65–70, 2021), Boulanger et al. (Ann Henri Lebesgue, 2024), and Boulanger (Algebraic intersection, lengths and Veech surfaces, 2023. arXiv:2309.17165), and we construct families of translation surfaces in each connected component of the minimal stratum <span>\\(\\mathcal {H}(2g-2)\\)</span> of the moduli space of translation surfaces of genus <span>\\(g \\ge 2\\)</span> such that KVol is arbitrarily close to the genus of the surface, which is conjectured to be the infimum of KVol on <span>\\(\\mathcal {H}(2g-2)\\)</span>.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower bound for KVol on the minimal stratum of translation surfaces\",\"authors\":\"Julien Boulanger\",\"doi\":\"10.1007/s10711-024-00937-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we are interested in algebraic intersection of closed curves of a given length on translation surfaces. We study the quantity KVol, defined in Cheboui et al. (Bull Soc Math France 149(4):613–640, 2021) and studied in Cheboui et al. (2021), Cheboui et al. (C R Math Acad Sci Paris 359:65–70, 2021), Boulanger et al. (Ann Henri Lebesgue, 2024), and Boulanger (Algebraic intersection, lengths and Veech surfaces, 2023. arXiv:2309.17165), and we construct families of translation surfaces in each connected component of the minimal stratum <span>\\\\(\\\\mathcal {H}(2g-2)\\\\)</span> of the moduli space of translation surfaces of genus <span>\\\\(g \\\\ge 2\\\\)</span> such that KVol is arbitrarily close to the genus of the surface, which is conjectured to be the infimum of KVol on <span>\\\\(\\\\mathcal {H}(2g-2)\\\\)</span>.</p>\",\"PeriodicalId\":55103,\"journal\":{\"name\":\"Geometriae Dedicata\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometriae Dedicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00937-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00937-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对平移面上给定长度的封闭曲线的代数相交感兴趣。我们研究了 KVol 这个量,它在 Cheboui 等人 (Bull Soc Math France 149(4):613-640, 2021) 中定义,并在 Cheboui 等人 (2021)、Cheboui 等人 (C R Math Acad Sci Paris 359:65-70, 2021)、Boulanger 等人 (Ann Henri Lebesgue, 2024) 和 Boulanger (Algebraic intersection, lengths and Veech surfaces, 2023. arXiv:2309.17165), 我们在属\(g\ge 2\) 的平移面的模空间的最小层 \(\mathcal {H}(2g-2)\) 的每个连通分量中构造了平移面族,使得 KVol 任意地接近于曲面的属,这被猜想为 KVol 在 \(\mathcal {H}(2g-2)\) 上的最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lower bound for KVol on the minimal stratum of translation surfaces

Lower bound for KVol on the minimal stratum of translation surfaces

In this paper we are interested in algebraic intersection of closed curves of a given length on translation surfaces. We study the quantity KVol, defined in Cheboui et al. (Bull Soc Math France 149(4):613–640, 2021) and studied in Cheboui et al. (2021), Cheboui et al. (C R Math Acad Sci Paris 359:65–70, 2021), Boulanger et al. (Ann Henri Lebesgue, 2024), and Boulanger (Algebraic intersection, lengths and Veech surfaces, 2023. arXiv:2309.17165), and we construct families of translation surfaces in each connected component of the minimal stratum \(\mathcal {H}(2g-2)\) of the moduli space of translation surfaces of genus \(g \ge 2\) such that KVol is arbitrarily close to the genus of the surface, which is conjectured to be the infimum of KVol on \(\mathcal {H}(2g-2)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometriae Dedicata
Geometriae Dedicata 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems. Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include: A fast turn-around time for articles. Special issues centered on specific topics. All submitted papers should include some explanation of the context of the main results. Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信