{"title":"平移面最小层上 KVol 的下限","authors":"Julien Boulanger","doi":"10.1007/s10711-024-00937-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper we are interested in algebraic intersection of closed curves of a given length on translation surfaces. We study the quantity KVol, defined in Cheboui et al. (Bull Soc Math France 149(4):613–640, 2021) and studied in Cheboui et al. (2021), Cheboui et al. (C R Math Acad Sci Paris 359:65–70, 2021), Boulanger et al. (Ann Henri Lebesgue, 2024), and Boulanger (Algebraic intersection, lengths and Veech surfaces, 2023. arXiv:2309.17165), and we construct families of translation surfaces in each connected component of the minimal stratum <span>\\(\\mathcal {H}(2g-2)\\)</span> of the moduli space of translation surfaces of genus <span>\\(g \\ge 2\\)</span> such that KVol is arbitrarily close to the genus of the surface, which is conjectured to be the infimum of KVol on <span>\\(\\mathcal {H}(2g-2)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower bound for KVol on the minimal stratum of translation surfaces\",\"authors\":\"Julien Boulanger\",\"doi\":\"10.1007/s10711-024-00937-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we are interested in algebraic intersection of closed curves of a given length on translation surfaces. We study the quantity KVol, defined in Cheboui et al. (Bull Soc Math France 149(4):613–640, 2021) and studied in Cheboui et al. (2021), Cheboui et al. (C R Math Acad Sci Paris 359:65–70, 2021), Boulanger et al. (Ann Henri Lebesgue, 2024), and Boulanger (Algebraic intersection, lengths and Veech surfaces, 2023. arXiv:2309.17165), and we construct families of translation surfaces in each connected component of the minimal stratum <span>\\\\(\\\\mathcal {H}(2g-2)\\\\)</span> of the moduli space of translation surfaces of genus <span>\\\\(g \\\\ge 2\\\\)</span> such that KVol is arbitrarily close to the genus of the surface, which is conjectured to be the infimum of KVol on <span>\\\\(\\\\mathcal {H}(2g-2)\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00937-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00937-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们对平移面上给定长度的封闭曲线的代数相交感兴趣。我们研究了 KVol 这个量,它在 Cheboui 等人 (Bull Soc Math France 149(4):613-640, 2021) 中定义,并在 Cheboui 等人 (2021)、Cheboui 等人 (C R Math Acad Sci Paris 359:65-70, 2021)、Boulanger 等人 (Ann Henri Lebesgue, 2024) 和 Boulanger (Algebraic intersection, lengths and Veech surfaces, 2023. arXiv:2309.17165), 我们在属\(g\ge 2\) 的平移面的模空间的最小层 \(\mathcal {H}(2g-2)\) 的每个连通分量中构造了平移面族,使得 KVol 任意地接近于曲面的属,这被猜想为 KVol 在 \(\mathcal {H}(2g-2)\) 上的最小值。
Lower bound for KVol on the minimal stratum of translation surfaces
In this paper we are interested in algebraic intersection of closed curves of a given length on translation surfaces. We study the quantity KVol, defined in Cheboui et al. (Bull Soc Math France 149(4):613–640, 2021) and studied in Cheboui et al. (2021), Cheboui et al. (C R Math Acad Sci Paris 359:65–70, 2021), Boulanger et al. (Ann Henri Lebesgue, 2024), and Boulanger (Algebraic intersection, lengths and Veech surfaces, 2023. arXiv:2309.17165), and we construct families of translation surfaces in each connected component of the minimal stratum \(\mathcal {H}(2g-2)\) of the moduli space of translation surfaces of genus \(g \ge 2\) such that KVol is arbitrarily close to the genus of the surface, which is conjectured to be the infimum of KVol on \(\mathcal {H}(2g-2)\).