半导体纳米结构中不均匀应变的包络函数理论

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Andrea Secchi, Filippo Troiani
{"title":"半导体纳米结构中不均匀应变的包络函数理论","authors":"Andrea Secchi, Filippo Troiani","doi":"10.1103/physrevb.110.045420","DOIUrl":null,"url":null,"abstract":"Strain represents an ubiquitous feature in semiconductor heterostructures, and can be engineered by different means in order to improve the properties of various devices, including advanced metal-oxide-semiconductor field-effect transistors and spin-based qubits. However, its treatment within the envelope function framework is well established only for the homogeneous case, thanks to the theory of Bir and Pikus. Here, we generalize this theory to the case of inhomogeneous strain. By fully accounting for the relativistic effects and metric aspects of the problem, we derive a complete envelope-function Hamiltonian, including the terms that depend on first and second spatial derivatives of the strain tensor.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Envelope-function theory of inhomogeneous strain in semiconductor nanostructures\",\"authors\":\"Andrea Secchi, Filippo Troiani\",\"doi\":\"10.1103/physrevb.110.045420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strain represents an ubiquitous feature in semiconductor heterostructures, and can be engineered by different means in order to improve the properties of various devices, including advanced metal-oxide-semiconductor field-effect transistors and spin-based qubits. However, its treatment within the envelope function framework is well established only for the homogeneous case, thanks to the theory of Bir and Pikus. Here, we generalize this theory to the case of inhomogeneous strain. By fully accounting for the relativistic effects and metric aspects of the problem, we derive a complete envelope-function Hamiltonian, including the terms that depend on first and second spatial derivatives of the strain tensor.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.045420\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.045420","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

应变是半导体异质结构中无处不在的特征,可以通过不同的方法来改善各种器件的性能,包括先进的金属氧化物半导体场效应晶体管和自旋量子比特。然而,由于比尔和皮库斯的理论,其在包络函数框架内的处理方法仅适用于同质情况。在这里,我们将这一理论推广到非均质应变的情况。通过充分考虑相对论效应和问题的度量方面,我们推导出一个完整的包络函数哈密顿,其中包括取决于应变张量一阶和二阶空间导数的项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Envelope-function theory of inhomogeneous strain in semiconductor nanostructures

Envelope-function theory of inhomogeneous strain in semiconductor nanostructures
Strain represents an ubiquitous feature in semiconductor heterostructures, and can be engineered by different means in order to improve the properties of various devices, including advanced metal-oxide-semiconductor field-effect transistors and spin-based qubits. However, its treatment within the envelope function framework is well established only for the homogeneous case, thanks to the theory of Bir and Pikus. Here, we generalize this theory to the case of inhomogeneous strain. By fully accounting for the relativistic effects and metric aspects of the problem, we derive a complete envelope-function Hamiltonian, including the terms that depend on first and second spatial derivatives of the strain tensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信