Pilar Gracia-de-Rentería , Victor Nechifor , Emanuele Ferrari
{"title":"捕捉非洲作物水足迹的驱动因素及其空间模式","authors":"Pilar Gracia-de-Rentería , Victor Nechifor , Emanuele Ferrari","doi":"10.1016/j.wre.2024.100248","DOIUrl":null,"url":null,"abstract":"<div><p>Improving water efficiency in the agricultural sector is essential to ensure sustainable withdrawals and supply of freshwater in a context of increasing water scarcity and human water demand. The water footprint (WF) is an established metric of resource intensity while the drivers steering WF over time remain under-researched. To advance this line of research, this paper assesses the sign and magnitude of macroeconomic, climatic, and agronomic drivers on the agricultural crop WF in 43 countries of the African continent for the period 2002–2016, using econometric panel data techniques and considering potential spatial patterns. The results reveal a significant spatial dependence in the WF across neighbouring countries. Socioeconomic factors are the most important determinant of water productivity, indicating that economic development facilitates a falling water requirement per unit of production. A negative impact of the temperature variation on the WF is also found, while the share of total land dedicated to agriculture tends to increase the crop WF in the continent. These results support designing adequate agricultural and water management policies to achieve sustainable and resilient food systems capable of adapting to anticipated population growth, climate change and other future threats to human health, prosperity and environmental sustainability in Africa.</p></div>","PeriodicalId":48644,"journal":{"name":"Water Resources and Economics","volume":"47 ","pages":"Article 100248"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212428424000124/pdfft?md5=ecdfd6da691076dc11de73c8fea53c54&pid=1-s2.0-S2212428424000124-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Capturing the drivers of crop water footprints in Africa and its spatial patterns\",\"authors\":\"Pilar Gracia-de-Rentería , Victor Nechifor , Emanuele Ferrari\",\"doi\":\"10.1016/j.wre.2024.100248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Improving water efficiency in the agricultural sector is essential to ensure sustainable withdrawals and supply of freshwater in a context of increasing water scarcity and human water demand. The water footprint (WF) is an established metric of resource intensity while the drivers steering WF over time remain under-researched. To advance this line of research, this paper assesses the sign and magnitude of macroeconomic, climatic, and agronomic drivers on the agricultural crop WF in 43 countries of the African continent for the period 2002–2016, using econometric panel data techniques and considering potential spatial patterns. The results reveal a significant spatial dependence in the WF across neighbouring countries. Socioeconomic factors are the most important determinant of water productivity, indicating that economic development facilitates a falling water requirement per unit of production. A negative impact of the temperature variation on the WF is also found, while the share of total land dedicated to agriculture tends to increase the crop WF in the continent. These results support designing adequate agricultural and water management policies to achieve sustainable and resilient food systems capable of adapting to anticipated population growth, climate change and other future threats to human health, prosperity and environmental sustainability in Africa.</p></div>\",\"PeriodicalId\":48644,\"journal\":{\"name\":\"Water Resources and Economics\",\"volume\":\"47 \",\"pages\":\"Article 100248\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212428424000124/pdfft?md5=ecdfd6da691076dc11de73c8fea53c54&pid=1-s2.0-S2212428424000124-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Economics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212428424000124\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Economics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212428424000124","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Capturing the drivers of crop water footprints in Africa and its spatial patterns
Improving water efficiency in the agricultural sector is essential to ensure sustainable withdrawals and supply of freshwater in a context of increasing water scarcity and human water demand. The water footprint (WF) is an established metric of resource intensity while the drivers steering WF over time remain under-researched. To advance this line of research, this paper assesses the sign and magnitude of macroeconomic, climatic, and agronomic drivers on the agricultural crop WF in 43 countries of the African continent for the period 2002–2016, using econometric panel data techniques and considering potential spatial patterns. The results reveal a significant spatial dependence in the WF across neighbouring countries. Socioeconomic factors are the most important determinant of water productivity, indicating that economic development facilitates a falling water requirement per unit of production. A negative impact of the temperature variation on the WF is also found, while the share of total land dedicated to agriculture tends to increase the crop WF in the continent. These results support designing adequate agricultural and water management policies to achieve sustainable and resilient food systems capable of adapting to anticipated population growth, climate change and other future threats to human health, prosperity and environmental sustainability in Africa.
期刊介绍:
Water Resources and Economics is one of a series of specialist titles launched by the highly-regarded Water Research. For the purpose of sustainable water resources management, understanding the multiple connections and feedback mechanisms between water resources and the economy is crucial. Water Resources and Economics addresses the financial and economic dimensions associated with water resources use and governance, across different economic sectors like agriculture, energy, industry, shipping, recreation and urban and rural water supply, at local, regional and transboundary scale.
Topics of interest include (but are not restricted to) the economics of:
Aquatic ecosystem services-
Blue economy-
Climate change and flood risk management-
Climate smart agriculture-
Coastal management-
Droughts and water scarcity-
Environmental flows-
Eutrophication-
Food, water, energy nexus-
Groundwater management-
Hydropower generation-
Hydrological risks and uncertainties-
Marine resources-
Nature-based solutions-
Resource recovery-
River restoration-
Storm water harvesting-
Transboundary water allocation-
Urban water management-
Wastewater treatment-
Watershed management-
Water health risks-
Water pollution-
Water quality management-
Water security-
Water stress-
Water technology innovation.