SSFCM-FWCW:基于特征-权值和聚类-权值学习的半监督模糊 C-Means 方法

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Amin Golzari Oskouei , Negin Samadi , Jafar Tanha , Asgarali Bouyer
{"title":"SSFCM-FWCW:基于特征-权值和聚类-权值学习的半监督模糊 C-Means 方法","authors":"Amin Golzari Oskouei ,&nbsp;Negin Samadi ,&nbsp;Jafar Tanha ,&nbsp;Asgarali Bouyer","doi":"10.1016/j.simpa.2024.100678","DOIUrl":null,"url":null,"abstract":"<div><p>SSFCM-FWCW (Feature-Weight and Cluster-Weight based Semi-Supervised Fuzzy <em>C</em>-Means) is a soft clustering method. It incorporates supplementary label information to enhance the clustering quality. An adaptive local feature weighting technique is utilized to weight features based on their significance within specific clusters. Additionally, an adaptive weighting technique is applied to diminish the sensitivity to the initial center selection, effectively distinguishing between the effects of various clusters. The conjunction of label information and adaptive weighting results in an optimal fuzzy <em>c</em>-means clustering with an insight into the importance of individual features and clusters. An open-source Matlab implementation of SSFCM-FWCW is available.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100678"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000666/pdfft?md5=ef848f90365139295625e2a7b7f9c617&pid=1-s2.0-S2665963824000666-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SSFCM-FWCW: Semi-Supervised Fuzzy C-Means method based on Feature-Weight and Cluster-Weight learning\",\"authors\":\"Amin Golzari Oskouei ,&nbsp;Negin Samadi ,&nbsp;Jafar Tanha ,&nbsp;Asgarali Bouyer\",\"doi\":\"10.1016/j.simpa.2024.100678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>SSFCM-FWCW (Feature-Weight and Cluster-Weight based Semi-Supervised Fuzzy <em>C</em>-Means) is a soft clustering method. It incorporates supplementary label information to enhance the clustering quality. An adaptive local feature weighting technique is utilized to weight features based on their significance within specific clusters. Additionally, an adaptive weighting technique is applied to diminish the sensitivity to the initial center selection, effectively distinguishing between the effects of various clusters. The conjunction of label information and adaptive weighting results in an optimal fuzzy <em>c</em>-means clustering with an insight into the importance of individual features and clusters. An open-source Matlab implementation of SSFCM-FWCW is available.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"21 \",\"pages\":\"Article 100678\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000666/pdfft?md5=ef848f90365139295625e2a7b7f9c617&pid=1-s2.0-S2665963824000666-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

SSFCM-FWCW(基于特征-权值和聚类-权值的半监督模糊 C-Means 方法)是一种软聚类方法。它结合了补充标签信息来提高聚类质量。它采用自适应局部特征加权技术,根据特征在特定聚类中的重要性对其进行加权。此外,自适应加权技术还能降低对初始中心选择的敏感度,有效区分不同聚类的影响。将标签信息和自适应加权结合起来,就能实现最佳的模糊 c-means 聚类,并深入了解各个特征和聚类的重要性。SSFCM-FWCW 的开源 Matlab 实现已经发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SSFCM-FWCW: Semi-Supervised Fuzzy C-Means method based on Feature-Weight and Cluster-Weight learning

SSFCM-FWCW (Feature-Weight and Cluster-Weight based Semi-Supervised Fuzzy C-Means) is a soft clustering method. It incorporates supplementary label information to enhance the clustering quality. An adaptive local feature weighting technique is utilized to weight features based on their significance within specific clusters. Additionally, an adaptive weighting technique is applied to diminish the sensitivity to the initial center selection, effectively distinguishing between the effects of various clusters. The conjunction of label information and adaptive weighting results in an optimal fuzzy c-means clustering with an insight into the importance of individual features and clusters. An open-source Matlab implementation of SSFCM-FWCW is available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信