Camillo De Lellis , Jonas Hirsch , Andrea Marchese , Luca Spolaor , Salvatore Stuvard
{"title":"最小化超电流模式 2Q 的过量衰减","authors":"Camillo De Lellis , Jonas Hirsch , Andrea Marchese , Luca Spolaor , Salvatore Stuvard","doi":"10.1016/j.na.2024.113606","DOIUrl":null,"url":null,"abstract":"<div><p>We consider codimension 1 area-minimizing <span><math><mi>m</mi></math></span>-dimensional currents <span><math><mi>T</mi></math></span> mod an even integer <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn><mi>Q</mi></mrow></math></span> in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Riemannian submanifold <span><math><mi>Σ</mi></math></span> of Euclidean space. We prove a suitable excess-decay estimate towards the unique tangent cone at every point <span><math><mrow><mi>q</mi><mo>∈</mo><mi>spt</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∖</mo><msup><mrow><mi>spt</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>∂</mi><mi>T</mi><mo>)</mo></mrow></mrow></math></span> where at least one such tangent cone is <span><math><mi>Q</mi></math></span> copies of a single plane. While an analogous decay statement was proved in Minter and Wickramasekera (2024) as a corollary of a more general theory for stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the second fundamental form of <span><math><mi>Σ</mi></math></span>. This improvement is in fact crucial in De Lellis et al., (2022) to prove that the singular set of <span><math><mi>T</mi></math></span> can be decomposed into a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional submanifold and an additional closed remaining set of Hausdorff dimension at most <span><math><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excess decay for minimizing hypercurrents mod 2Q\",\"authors\":\"Camillo De Lellis , Jonas Hirsch , Andrea Marchese , Luca Spolaor , Salvatore Stuvard\",\"doi\":\"10.1016/j.na.2024.113606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider codimension 1 area-minimizing <span><math><mi>m</mi></math></span>-dimensional currents <span><math><mi>T</mi></math></span> mod an even integer <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn><mi>Q</mi></mrow></math></span> in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Riemannian submanifold <span><math><mi>Σ</mi></math></span> of Euclidean space. We prove a suitable excess-decay estimate towards the unique tangent cone at every point <span><math><mrow><mi>q</mi><mo>∈</mo><mi>spt</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∖</mo><msup><mrow><mi>spt</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>∂</mi><mi>T</mi><mo>)</mo></mrow></mrow></math></span> where at least one such tangent cone is <span><math><mi>Q</mi></math></span> copies of a single plane. While an analogous decay statement was proved in Minter and Wickramasekera (2024) as a corollary of a more general theory for stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the second fundamental form of <span><math><mi>Σ</mi></math></span>. This improvement is in fact crucial in De Lellis et al., (2022) to prove that the singular set of <span><math><mi>T</mi></math></span> can be decomposed into a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional submanifold and an additional closed remaining set of Hausdorff dimension at most <span><math><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001251\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001251","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We consider codimension 1 area-minimizing -dimensional currents mod an even integer in a Riemannian submanifold of Euclidean space. We prove a suitable excess-decay estimate towards the unique tangent cone at every point where at least one such tangent cone is copies of a single plane. While an analogous decay statement was proved in Minter and Wickramasekera (2024) as a corollary of a more general theory for stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the second fundamental form of . This improvement is in fact crucial in De Lellis et al., (2022) to prove that the singular set of can be decomposed into a -dimensional submanifold and an additional closed remaining set of Hausdorff dimension at most .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.