最小化超电流模式 2Q 的过量衰减

IF 1.3 2区 数学 Q1 MATHEMATICS
Camillo De Lellis , Jonas Hirsch , Andrea Marchese , Luca Spolaor , Salvatore Stuvard
{"title":"最小化超电流模式 2Q 的过量衰减","authors":"Camillo De Lellis ,&nbsp;Jonas Hirsch ,&nbsp;Andrea Marchese ,&nbsp;Luca Spolaor ,&nbsp;Salvatore Stuvard","doi":"10.1016/j.na.2024.113606","DOIUrl":null,"url":null,"abstract":"<div><p>We consider codimension 1 area-minimizing <span><math><mi>m</mi></math></span>-dimensional currents <span><math><mi>T</mi></math></span> mod an even integer <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn><mi>Q</mi></mrow></math></span> in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Riemannian submanifold <span><math><mi>Σ</mi></math></span> of Euclidean space. We prove a suitable excess-decay estimate towards the unique tangent cone at every point <span><math><mrow><mi>q</mi><mo>∈</mo><mi>spt</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∖</mo><msup><mrow><mi>spt</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>∂</mi><mi>T</mi><mo>)</mo></mrow></mrow></math></span> where at least one such tangent cone is <span><math><mi>Q</mi></math></span> copies of a single plane. While an analogous decay statement was proved in Minter and Wickramasekera (2024) as a corollary of a more general theory for stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the second fundamental form of <span><math><mi>Σ</mi></math></span>. This improvement is in fact crucial in De Lellis et al., (2022) to prove that the singular set of <span><math><mi>T</mi></math></span> can be decomposed into a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional submanifold and an additional closed remaining set of Hausdorff dimension at most <span><math><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"247 ","pages":"Article 113606"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excess decay for minimizing hypercurrents mod 2Q\",\"authors\":\"Camillo De Lellis ,&nbsp;Jonas Hirsch ,&nbsp;Andrea Marchese ,&nbsp;Luca Spolaor ,&nbsp;Salvatore Stuvard\",\"doi\":\"10.1016/j.na.2024.113606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider codimension 1 area-minimizing <span><math><mi>m</mi></math></span>-dimensional currents <span><math><mi>T</mi></math></span> mod an even integer <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn><mi>Q</mi></mrow></math></span> in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> Riemannian submanifold <span><math><mi>Σ</mi></math></span> of Euclidean space. We prove a suitable excess-decay estimate towards the unique tangent cone at every point <span><math><mrow><mi>q</mi><mo>∈</mo><mi>spt</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>∖</mo><msup><mrow><mi>spt</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>∂</mi><mi>T</mi><mo>)</mo></mrow></mrow></math></span> where at least one such tangent cone is <span><math><mi>Q</mi></math></span> copies of a single plane. While an analogous decay statement was proved in Minter and Wickramasekera (2024) as a corollary of a more general theory for stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the second fundamental form of <span><math><mi>Σ</mi></math></span>. This improvement is in fact crucial in De Lellis et al., (2022) to prove that the singular set of <span><math><mi>T</mi></math></span> can be decomposed into a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional submanifold and an additional closed remaining set of Hausdorff dimension at most <span><math><mrow><mi>m</mi><mo>−</mo><mn>2</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"247 \",\"pages\":\"Article 113606\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001251\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001251","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑欧几里得空间的 C2 黎曼子实体 Σ 中的标度为 1 的面积最小化 m 维电流 T,模为偶数整数 p=2Q。我们证明了对每个点 q∈spt(T)∖sptp(∂T) 的唯一切锥的适当过量衰减估计,其中至少有一个这样的切锥是单平面的 Q 副本。虽然 Minter 和 Wickramasekera(2024 年)证明了类似的衰减声明,作为稳定变折的更一般理论的推论,但在我们的声明中,我们努力使估计值对 Σ 的第二基本形式具有最佳依赖性。事实上,这一改进在 De Lellis 等人(2022)的研究中至关重要,他们证明了 T 的奇异集合可以分解为一个 C1,α (m-1) 维的子实体和一个最多为 m-2 维的额外封闭剩余集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excess decay for minimizing hypercurrents mod 2Q

We consider codimension 1 area-minimizing m-dimensional currents T mod an even integer p=2Q in a C2 Riemannian submanifold Σ of Euclidean space. We prove a suitable excess-decay estimate towards the unique tangent cone at every point qspt(T)sptp(T) where at least one such tangent cone is Q copies of a single plane. While an analogous decay statement was proved in Minter and Wickramasekera (2024) as a corollary of a more general theory for stable varifolds, in our statement we strive for the optimal dependence of the estimates upon the second fundamental form of Σ. This improvement is in fact crucial in De Lellis et al., (2022) to prove that the singular set of T can be decomposed into a C1,α (m1)-dimensional submanifold and an additional closed remaining set of Hausdorff dimension at most m2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信