{"title":"具有随时间变化的阻尼的双曲系统的全局平稳解","authors":"Cunming Liu , Han Sheng , Ning-An Lai","doi":"10.1016/j.na.2024.113608","DOIUrl":null,"url":null,"abstract":"<div><p>The Cauchy problem for hyperbolic systems of balance laws admits global smooth solutions near the constant states under stability condition. This was widely studied in previous works. In this paper, we concern hyperbolic systems with time-dependent damping <span><math><mrow><mi>μ</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup><mi>G</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span>. In the following two cases, <span><math><mrow><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mspace></mspace><mi>λ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>μ</mi><mo>></mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> is a constant depending only on the coefficients of the system; <span><math><mrow><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow><mspace></mspace><mn>0</mn><mo><</mo><mi>λ</mi><mo><</mo><mn>1</mn><mo>,</mo><mi>μ</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math></span> we prove that the smooth solutions exist globally when the initial data is small. To obtain these stability results, we establish uniform energy estimates and various dissipative estimates for all time and employ an induction argument on the order of derivatives of smooth solutions. Finally, we apply these results to some physical models.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"247 ","pages":"Article 113608"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global smooth solutions for hyperbolic systems with time-dependent damping\",\"authors\":\"Cunming Liu , Han Sheng , Ning-An Lai\",\"doi\":\"10.1016/j.na.2024.113608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Cauchy problem for hyperbolic systems of balance laws admits global smooth solutions near the constant states under stability condition. This was widely studied in previous works. In this paper, we concern hyperbolic systems with time-dependent damping <span><math><mrow><mi>μ</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup><mi>G</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>λ</mi><mo>></mo><mn>0</mn></mrow></math></span>. In the following two cases, <span><math><mrow><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mspace></mspace><mi>λ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>μ</mi><mo>></mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> is a constant depending only on the coefficients of the system; <span><math><mrow><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow><mspace></mspace><mn>0</mn><mo><</mo><mi>λ</mi><mo><</mo><mn>1</mn><mo>,</mo><mi>μ</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></math></span> we prove that the smooth solutions exist globally when the initial data is small. To obtain these stability results, we establish uniform energy estimates and various dissipative estimates for all time and employ an induction argument on the order of derivatives of smooth solutions. Finally, we apply these results to some physical models.</p></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"247 \",\"pages\":\"Article 113608\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001275\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001275","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global smooth solutions for hyperbolic systems with time-dependent damping
The Cauchy problem for hyperbolic systems of balance laws admits global smooth solutions near the constant states under stability condition. This was widely studied in previous works. In this paper, we concern hyperbolic systems with time-dependent damping with . In the following two cases, where is a constant depending only on the coefficients of the system; we prove that the smooth solutions exist globally when the initial data is small. To obtain these stability results, we establish uniform energy estimates and various dissipative estimates for all time and employ an induction argument on the order of derivatives of smooth solutions. Finally, we apply these results to some physical models.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.