具有随时间变化的阻尼的双曲系统的全局平稳解

IF 1.3 2区 数学 Q1 MATHEMATICS
Cunming Liu , Han Sheng , Ning-An Lai
{"title":"具有随时间变化的阻尼的双曲系统的全局平稳解","authors":"Cunming Liu ,&nbsp;Han Sheng ,&nbsp;Ning-An Lai","doi":"10.1016/j.na.2024.113608","DOIUrl":null,"url":null,"abstract":"<div><p>The Cauchy problem for hyperbolic systems of balance laws admits global smooth solutions near the constant states under stability condition. This was widely studied in previous works. In this paper, we concern hyperbolic systems with time-dependent damping <span><math><mrow><mi>μ</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup><mi>G</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. In the following two cases, <span><math><mrow><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mspace></mspace><mi>λ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>μ</mi><mo>&gt;</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a constant depending only on the coefficients of the system; <span><math><mrow><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow><mspace></mspace><mn>0</mn><mo>&lt;</mo><mi>λ</mi><mo>&lt;</mo><mn>1</mn><mo>,</mo><mi>μ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mrow></math></span> we prove that the smooth solutions exist globally when the initial data is small. To obtain these stability results, we establish uniform energy estimates and various dissipative estimates for all time and employ an induction argument on the order of derivatives of smooth solutions. Finally, we apply these results to some physical models.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"247 ","pages":"Article 113608"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global smooth solutions for hyperbolic systems with time-dependent damping\",\"authors\":\"Cunming Liu ,&nbsp;Han Sheng ,&nbsp;Ning-An Lai\",\"doi\":\"10.1016/j.na.2024.113608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Cauchy problem for hyperbolic systems of balance laws admits global smooth solutions near the constant states under stability condition. This was widely studied in previous works. In this paper, we concern hyperbolic systems with time-dependent damping <span><math><mrow><mi>μ</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup><mi>G</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. In the following two cases, <span><math><mrow><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mspace></mspace><mi>λ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>μ</mi><mo>&gt;</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> is a constant depending only on the coefficients of the system; <span><math><mrow><mrow><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></mrow><mspace></mspace><mn>0</mn><mo>&lt;</mo><mi>λ</mi><mo>&lt;</mo><mn>1</mn><mo>,</mo><mi>μ</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mrow></math></span> we prove that the smooth solutions exist globally when the initial data is small. To obtain these stability results, we establish uniform energy estimates and various dissipative estimates for all time and employ an induction argument on the order of derivatives of smooth solutions. Finally, we apply these results to some physical models.</p></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"247 \",\"pages\":\"Article 113608\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001275\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001275","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在稳定条件下,双曲平衡律系统的 Cauchy 问题在恒定状态附近存在全局平稳解。这在以前的著作中得到了广泛的研究。在本文中,我们关注的是具有时间相关阻尼 μ(1+t)-λG(U)、μ>0,λ>0 的双曲系统。在以下两种情况下,(i)λ=1,μ>μ0,其中μ0>0 是仅取决于系统系数的常数;(ii)0<λ<1,μ>0,我们证明当初始数据较小时,平稳解在全局上存在。为了获得这些稳定性结果,我们建立了所有时间的均匀能量估计和各种耗散估计,并对平稳解的导数阶数进行了归纳论证。最后,我们将这些结果应用于一些物理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global smooth solutions for hyperbolic systems with time-dependent damping

The Cauchy problem for hyperbolic systems of balance laws admits global smooth solutions near the constant states under stability condition. This was widely studied in previous works. In this paper, we concern hyperbolic systems with time-dependent damping μ(1+t)λG(U) with μ>0,λ>0. In the following two cases, (i)λ=1,μ>μ0, where μ0>0 is a constant depending only on the coefficients of the system; (ii)0<λ<1,μ>0, we prove that the smooth solutions exist globally when the initial data is small. To obtain these stability results, we establish uniform energy estimates and various dissipative estimates for all time and employ an induction argument on the order of derivatives of smooth solutions. Finally, we apply these results to some physical models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信