通过与 Bi0.33(Bi6S9)Br 纳米棒复合提高 Bi2S3 块体材料的热电和机械性能

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Ze-Yuan Yang, Luan Jiang, Tian-Yu Zhong, Jun Guo, Zi-Yuan Wang, Xing Yang, Jing Feng, Zhen-Hua Ge
{"title":"通过与 Bi0.33(Bi6S9)Br 纳米棒复合提高 Bi2S3 块体材料的热电和机械性能","authors":"Ze-Yuan Yang,&nbsp;Luan Jiang,&nbsp;Tian-Yu Zhong,&nbsp;Jun Guo,&nbsp;Zi-Yuan Wang,&nbsp;Xing Yang,&nbsp;Jing Feng,&nbsp;Zhen-Hua Ge","doi":"10.1016/j.solidstatesciences.2024.107620","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Bi<sub>2</sub>S<sub>3</sub> has garnered significant interest in the thermoelectric field due to its abundant and low-toxicity constituents. Nevertheless, pure Bi<sub>2</sub>S<sub>3</sub> material has not been utilized in thermoelectric applications because of its low electrical conductivity. This study presents the fabrication of the Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br-doped Bi<sub>2</sub>S<sub>3</sub> bulk samples with high electrical conductivity and mechanical performance via the melting method in conjunction with spark plasma sintering technology. The increased electron concentration is attributed to the replacement of S<sup>2−</sup> by Br<sup>−</sup> and the introduction of extra Bi in the lattice. At 323 K, the electrical conductivity of the Bi<sub>2</sub>S<sub>3</sub> + 3 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br sample increased to 208 Scm<sup>−1</sup>, signifying a 3-order-of-magnitude enhancement compared to the pure sample. The enhanced electrical conductivity led to the optimization of the electrical transport properties. At 573 K, the Bi<sub>2</sub>S<sub>3</sub> + 2 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br bulk sample achieved a peak power factor value of 481 μWm<sup>−1</sup>K<sup>−2</sup>, which is four times higher than that of the pure sample. Notably, the low lattice thermal conductivity of the Bi<sub>2</sub>S<sub>3</sub> + 5 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br sample was 0.56 W<sup>−1</sup> m<sup>−1</sup>K<sup>−1</sup> at 673 K. Given the significantly enhanced electrical transport properties and suppressed thermal conductivity, the Bi<sub>2</sub>S<sub>3</sub> + 2 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br sample achieved a peak <em>ZT</em> value of 0.45 at 673 K and a high <em>ZT</em><sub><em>ave</em></sub> value of 0.33 from 373 to 673 K. Compared to the pure Bi<sub>2</sub>S<sub>3</sub> sample, these values are 5 times and 3 times higher, respectively. Such advancements can be implemented in the domain of power generation. Additionally, the mechanical properties of the sample exhibited substantial enhancement, and the average hardness of the 2 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br-doped sample increased from 2.73 GPa of the pure sample to 3.03 GPa. This novel strategy of dual point defects modulation provides a new pathway to enhance the thermoelectric performance of Bi<sub>2</sub>S<sub>3</sub> and other material systems.</p></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced thermoelectric and mechanical performance of Bi2S3 bulk materials by compositing with Bi0.33(Bi6S9)Br nanorods\",\"authors\":\"Ze-Yuan Yang,&nbsp;Luan Jiang,&nbsp;Tian-Yu Zhong,&nbsp;Jun Guo,&nbsp;Zi-Yuan Wang,&nbsp;Xing Yang,&nbsp;Jing Feng,&nbsp;Zhen-Hua Ge\",\"doi\":\"10.1016/j.solidstatesciences.2024.107620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, Bi<sub>2</sub>S<sub>3</sub> has garnered significant interest in the thermoelectric field due to its abundant and low-toxicity constituents. Nevertheless, pure Bi<sub>2</sub>S<sub>3</sub> material has not been utilized in thermoelectric applications because of its low electrical conductivity. This study presents the fabrication of the Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br-doped Bi<sub>2</sub>S<sub>3</sub> bulk samples with high electrical conductivity and mechanical performance via the melting method in conjunction with spark plasma sintering technology. The increased electron concentration is attributed to the replacement of S<sup>2−</sup> by Br<sup>−</sup> and the introduction of extra Bi in the lattice. At 323 K, the electrical conductivity of the Bi<sub>2</sub>S<sub>3</sub> + 3 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br sample increased to 208 Scm<sup>−1</sup>, signifying a 3-order-of-magnitude enhancement compared to the pure sample. The enhanced electrical conductivity led to the optimization of the electrical transport properties. At 573 K, the Bi<sub>2</sub>S<sub>3</sub> + 2 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br bulk sample achieved a peak power factor value of 481 μWm<sup>−1</sup>K<sup>−2</sup>, which is four times higher than that of the pure sample. Notably, the low lattice thermal conductivity of the Bi<sub>2</sub>S<sub>3</sub> + 5 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br sample was 0.56 W<sup>−1</sup> m<sup>−1</sup>K<sup>−1</sup> at 673 K. Given the significantly enhanced electrical transport properties and suppressed thermal conductivity, the Bi<sub>2</sub>S<sub>3</sub> + 2 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br sample achieved a peak <em>ZT</em> value of 0.45 at 673 K and a high <em>ZT</em><sub><em>ave</em></sub> value of 0.33 from 373 to 673 K. Compared to the pure Bi<sub>2</sub>S<sub>3</sub> sample, these values are 5 times and 3 times higher, respectively. Such advancements can be implemented in the domain of power generation. Additionally, the mechanical properties of the sample exhibited substantial enhancement, and the average hardness of the 2 wt% Bi<sub>0.33</sub>(Bi<sub>6</sub>S<sub>9</sub>)Br-doped sample increased from 2.73 GPa of the pure sample to 3.03 GPa. This novel strategy of dual point defects modulation provides a new pathway to enhance the thermoelectric performance of Bi<sub>2</sub>S<sub>3</sub> and other material systems.</p></div>\",\"PeriodicalId\":432,\"journal\":{\"name\":\"Solid State Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1293255824001857\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255824001857","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

最近,Bi2S3 因其丰富且低毒的成分在热电领域引起了极大的兴趣。然而,由于纯 Bi2S3 材料的导电率较低,因此尚未被用于热电应用。本研究通过熔融法结合火花等离子烧结技术,制备出具有高导电性和机械性能的掺杂 Bi0.33(Bi6S9)Br 的 Bi2S3 块状样品。电子浓度的增加归因于 Br- 取代了 S2- 并在晶格中引入了额外的 Bi。在 323 K 时,Bi2S3 + 3 wt% Bi0.33(Bi6S9)Br 样品的电导率增至 208 Scm-1,与纯样品相比提高了 3 个数量级。电导率的提高促进了电传输特性的优化。在 573 K 下,Bi2S3 + 2 wt% Bi0.33(Bi6S9)Br 块状样品的功率因数峰值达到 481 μWm-1K-2,是纯样品的四倍。值得注意的是,Bi2S3 + 5 wt% Bi0.33(Bi6S9)Br 样品的低晶格热导率在 673 K 时为 0.56 W-1 m-1K-1。33(Bi6S9)Br 样品在 673 K 时的 ZT 峰值为 0.45,在 373 至 673 K 期间的 ZTave 值高达 0.33。这种进步可以应用于发电领域。此外,样品的机械性能也得到了大幅提高,掺杂 2 wt% Bi0.33(Bi6S9)Br 的样品的平均硬度从纯样品的 2.73 GPa 提高到了 3.03 GPa。这种新颖的双点缺陷调制策略为提高 Bi2S3 及其他材料系统的热电性能提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced thermoelectric and mechanical performance of Bi2S3 bulk materials by compositing with Bi0.33(Bi6S9)Br nanorods

Enhanced thermoelectric and mechanical performance of Bi2S3 bulk materials by compositing with Bi0.33(Bi6S9)Br nanorods

Recently, Bi2S3 has garnered significant interest in the thermoelectric field due to its abundant and low-toxicity constituents. Nevertheless, pure Bi2S3 material has not been utilized in thermoelectric applications because of its low electrical conductivity. This study presents the fabrication of the Bi0.33(Bi6S9)Br-doped Bi2S3 bulk samples with high electrical conductivity and mechanical performance via the melting method in conjunction with spark plasma sintering technology. The increased electron concentration is attributed to the replacement of S2− by Br and the introduction of extra Bi in the lattice. At 323 K, the electrical conductivity of the Bi2S3 + 3 wt% Bi0.33(Bi6S9)Br sample increased to 208 Scm−1, signifying a 3-order-of-magnitude enhancement compared to the pure sample. The enhanced electrical conductivity led to the optimization of the electrical transport properties. At 573 K, the Bi2S3 + 2 wt% Bi0.33(Bi6S9)Br bulk sample achieved a peak power factor value of 481 μWm−1K−2, which is four times higher than that of the pure sample. Notably, the low lattice thermal conductivity of the Bi2S3 + 5 wt% Bi0.33(Bi6S9)Br sample was 0.56 W−1 m−1K−1 at 673 K. Given the significantly enhanced electrical transport properties and suppressed thermal conductivity, the Bi2S3 + 2 wt% Bi0.33(Bi6S9)Br sample achieved a peak ZT value of 0.45 at 673 K and a high ZTave value of 0.33 from 373 to 673 K. Compared to the pure Bi2S3 sample, these values are 5 times and 3 times higher, respectively. Such advancements can be implemented in the domain of power generation. Additionally, the mechanical properties of the sample exhibited substantial enhancement, and the average hardness of the 2 wt% Bi0.33(Bi6S9)Br-doped sample increased from 2.73 GPa of the pure sample to 3.03 GPa. This novel strategy of dual point defects modulation provides a new pathway to enhance the thermoelectric performance of Bi2S3 and other material systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信