Ruiyuan Huang , Yipeng Jiang , Jian Qin , Xiangyao Meng , Hui Chi , Xiaoqiang Yang , Xianhui Zheng , Zhichao Lai
{"title":"船舶在近场水下爆炸荷载作用下的耦合损伤效应研究","authors":"Ruiyuan Huang , Yipeng Jiang , Jian Qin , Xiangyao Meng , Hui Chi , Xiaoqiang Yang , Xianhui Zheng , Zhichao Lai","doi":"10.1016/j.marstruc.2024.103664","DOIUrl":null,"url":null,"abstract":"<div><p>Near-field underwater explosions generate complex load forms and cause destructive strikes on ships. To investigate the damage characteristics of ships under the combined effect of multiple loads, local and overall damage modes were first investigated through the combination of experimental tests and numerical simulation. Then a series of numerical simulations of full-scale ships subjected to near-field underwater explosions with different stand-off distances, equivalents, and detonation positions were carried out. The damage effects of shock wave, bubble pulsation, after flow, and water jet loads on ships were analyzed. The results show that the combined effects of different loads lead to different damage modes. Shock waves and after flow loads are the main cause of local damage and hogging damage, while pressure difference and bubble adsorption are the main reasons for the hogging damage. Finally, a criterion was proposed to determine the damage modes of ships under near-field underwater explosions.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"98 ","pages":"Article 103664"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the coupling damage effects of ships subjected to near-field underwater explosion loads\",\"authors\":\"Ruiyuan Huang , Yipeng Jiang , Jian Qin , Xiangyao Meng , Hui Chi , Xiaoqiang Yang , Xianhui Zheng , Zhichao Lai\",\"doi\":\"10.1016/j.marstruc.2024.103664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Near-field underwater explosions generate complex load forms and cause destructive strikes on ships. To investigate the damage characteristics of ships under the combined effect of multiple loads, local and overall damage modes were first investigated through the combination of experimental tests and numerical simulation. Then a series of numerical simulations of full-scale ships subjected to near-field underwater explosions with different stand-off distances, equivalents, and detonation positions were carried out. The damage effects of shock wave, bubble pulsation, after flow, and water jet loads on ships were analyzed. The results show that the combined effects of different loads lead to different damage modes. Shock waves and after flow loads are the main cause of local damage and hogging damage, while pressure difference and bubble adsorption are the main reasons for the hogging damage. Finally, a criterion was proposed to determine the damage modes of ships under near-field underwater explosions.</p></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"98 \",\"pages\":\"Article 103664\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924000923\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924000923","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Investigation on the coupling damage effects of ships subjected to near-field underwater explosion loads
Near-field underwater explosions generate complex load forms and cause destructive strikes on ships. To investigate the damage characteristics of ships under the combined effect of multiple loads, local and overall damage modes were first investigated through the combination of experimental tests and numerical simulation. Then a series of numerical simulations of full-scale ships subjected to near-field underwater explosions with different stand-off distances, equivalents, and detonation positions were carried out. The damage effects of shock wave, bubble pulsation, after flow, and water jet loads on ships were analyzed. The results show that the combined effects of different loads lead to different damage modes. Shock waves and after flow loads are the main cause of local damage and hogging damage, while pressure difference and bubble adsorption are the main reasons for the hogging damage. Finally, a criterion was proposed to determine the damage modes of ships under near-field underwater explosions.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.