{"title":"微生物组工程中基于甲基化的新方法。","authors":"Changhee Won, Sung Sun Yim","doi":"10.1186/s13068-024-02529-x","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial epigenetics, particularly through DNA methylation, exerts significant influence over various biological processes such as DNA replication, uptake, and gene regulation in bacteria. In this review, we explore recent advances in characterizing bacterial epigenomes, accompanied by emerging strategies that harness bacterial epigenetics to elucidate and engineer diverse bacterial species with precision and effectiveness. Furthermore, we delve into the potential of epigenetic modifications to steer microbial functions and influence community dynamics, offering promising opportunities for understanding and modulating microbiomes. Additionally, we investigate the extensive diversity of DNA methyltransferases and emphasize their potential utility in the context of the human microbiome. In summary, this review highlights the potential of DNA methylation as a powerful toolkit for engineering microbiomes.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02529-x","citationCount":"0","resultStr":"{\"title\":\"Emerging methylation-based approaches in microbiome engineering\",\"authors\":\"Changhee Won, Sung Sun Yim\",\"doi\":\"10.1186/s13068-024-02529-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bacterial epigenetics, particularly through DNA methylation, exerts significant influence over various biological processes such as DNA replication, uptake, and gene regulation in bacteria. In this review, we explore recent advances in characterizing bacterial epigenomes, accompanied by emerging strategies that harness bacterial epigenetics to elucidate and engineer diverse bacterial species with precision and effectiveness. Furthermore, we delve into the potential of epigenetic modifications to steer microbial functions and influence community dynamics, offering promising opportunities for understanding and modulating microbiomes. Additionally, we investigate the extensive diversity of DNA methyltransferases and emphasize their potential utility in the context of the human microbiome. In summary, this review highlights the potential of DNA methylation as a powerful toolkit for engineering microbiomes.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02529-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02529-x\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02529-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
细菌表观遗传学,尤其是通过 DNA 甲基化,对细菌的 DNA 复制、吸收和基因调控等各种生物过程产生了重大影响。在这篇综述中,我们探讨了细菌表观基因组特征描述的最新进展,以及利用细菌表观遗传学精确有效地阐明和改造不同细菌物种的新兴策略。此外,我们还深入研究了表观遗传修饰引导微生物功能和影响群落动态的潜力,为了解和调节微生物群提供了大有可为的机会。此外,我们还研究了 DNA 甲基转移酶的广泛多样性,并强调了它们在人类微生物组中的潜在作用。总之,本综述强调了 DNA 甲基化作为微生物组工程学强大工具包的潜力。
Emerging methylation-based approaches in microbiome engineering
Bacterial epigenetics, particularly through DNA methylation, exerts significant influence over various biological processes such as DNA replication, uptake, and gene regulation in bacteria. In this review, we explore recent advances in characterizing bacterial epigenomes, accompanied by emerging strategies that harness bacterial epigenetics to elucidate and engineer diverse bacterial species with precision and effectiveness. Furthermore, we delve into the potential of epigenetic modifications to steer microbial functions and influence community dynamics, offering promising opportunities for understanding and modulating microbiomes. Additionally, we investigate the extensive diversity of DNA methyltransferases and emphasize their potential utility in the context of the human microbiome. In summary, this review highlights the potential of DNA methylation as a powerful toolkit for engineering microbiomes.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis