用于数字病理学研究的 ChatGPT。

IF 23.8 1区 医学 Q1 MEDICAL INFORMATICS
{"title":"用于数字病理学研究的 ChatGPT。","authors":"","doi":"10.1016/S2589-7500(24)00114-6","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid evolution of generative artificial intelligence (AI) models including OpenAI's ChatGPT signals a promising era for medical research. In this Viewpoint, we explore the integration and challenges of large language models (LLMs) in digital pathology, a rapidly evolving domain demanding intricate contextual understanding. The restricted domain-specific efficiency of LLMs necessitates the advent of tailored AI tools, as illustrated by advancements seen in the last few years including FrugalGPT and BioBERT. Our initiative in digital pathology emphasises the potential of domain-specific AI tools, where a curated literature database coupled with a user-interactive web application facilitates precise, referenced information retrieval. Motivated by the success of this initiative, we discuss how domain-specific approaches substantially minimise the risk of inaccurate responses, enhancing the reliability and accuracy of information extraction. We also highlight the broader implications of such tools, particularly in streamlining access to scientific research and democratising access to computational pathology techniques for scientists with little coding experience. This Viewpoint calls for an enhanced integration of domain-specific text-generation AI tools in academic settings to facilitate continuous learning and adaptation to the dynamically evolving landscape of medical research.</p></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299190/pdf/","citationCount":"0","resultStr":"{\"title\":\"ChatGPT for digital pathology research\",\"authors\":\"\",\"doi\":\"10.1016/S2589-7500(24)00114-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid evolution of generative artificial intelligence (AI) models including OpenAI's ChatGPT signals a promising era for medical research. In this Viewpoint, we explore the integration and challenges of large language models (LLMs) in digital pathology, a rapidly evolving domain demanding intricate contextual understanding. The restricted domain-specific efficiency of LLMs necessitates the advent of tailored AI tools, as illustrated by advancements seen in the last few years including FrugalGPT and BioBERT. Our initiative in digital pathology emphasises the potential of domain-specific AI tools, where a curated literature database coupled with a user-interactive web application facilitates precise, referenced information retrieval. Motivated by the success of this initiative, we discuss how domain-specific approaches substantially minimise the risk of inaccurate responses, enhancing the reliability and accuracy of information extraction. We also highlight the broader implications of such tools, particularly in streamlining access to scientific research and democratising access to computational pathology techniques for scientists with little coding experience. This Viewpoint calls for an enhanced integration of domain-specific text-generation AI tools in academic settings to facilitate continuous learning and adaptation to the dynamically evolving landscape of medical research.</p></div>\",\"PeriodicalId\":48534,\"journal\":{\"name\":\"Lancet Digital Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Digital Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589750024001146\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750024001146","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

包括 OpenAI 的 ChatGPT 在内的生成式人工智能(AI)模型的快速发展标志着医学研究进入了一个充满希望的时代。在本视点中,我们将探讨大型语言模型(LLM)在数字病理学中的整合与挑战,这是一个需要复杂语境理解的快速发展领域。由于 LLMs 在特定领域的效率有限,因此有必要推出量身定制的人工智能工具,过去几年的进步(包括 FrugalGPT 和 BioBERT)就说明了这一点。我们在数字病理学方面的举措强调了特定领域人工智能工具的潜力,其中经过整理的文献数据库与用户交互式网络应用程序相结合,有助于进行精确的参考信息检索。在这一举措取得成功的激励下,我们讨论了针对特定领域的方法如何最大限度地降低不准确回答的风险,提高信息提取的可靠性和准确性。我们还强调了此类工具的更广泛意义,尤其是在简化科学研究的获取途径,以及使缺乏编码经验的科学家更容易获得计算病理学技术方面。本观点呼吁在学术环境中加强整合特定领域的文本生成人工智能工具,以促进不断学习和适应动态演变的医学研究环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ChatGPT for digital pathology research

The rapid evolution of generative artificial intelligence (AI) models including OpenAI's ChatGPT signals a promising era for medical research. In this Viewpoint, we explore the integration and challenges of large language models (LLMs) in digital pathology, a rapidly evolving domain demanding intricate contextual understanding. The restricted domain-specific efficiency of LLMs necessitates the advent of tailored AI tools, as illustrated by advancements seen in the last few years including FrugalGPT and BioBERT. Our initiative in digital pathology emphasises the potential of domain-specific AI tools, where a curated literature database coupled with a user-interactive web application facilitates precise, referenced information retrieval. Motivated by the success of this initiative, we discuss how domain-specific approaches substantially minimise the risk of inaccurate responses, enhancing the reliability and accuracy of information extraction. We also highlight the broader implications of such tools, particularly in streamlining access to scientific research and democratising access to computational pathology techniques for scientists with little coding experience. This Viewpoint calls for an enhanced integration of domain-specific text-generation AI tools in academic settings to facilitate continuous learning and adaptation to the dynamically evolving landscape of medical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
41.20
自引率
1.60%
发文量
232
审稿时长
13 weeks
期刊介绍: The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health. The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health. We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信