基于深度学习的认知模型,探究闪烁刺激的心理物理学与电生理学之间的关系。

Q1 Computer Science
Keerthi S Chandran, Kuntal Ghosh
{"title":"基于深度学习的认知模型,探究闪烁刺激的心理物理学与电生理学之间的关系。","authors":"Keerthi S Chandran, Kuntal Ghosh","doi":"10.1186/s40708-024-00231-0","DOIUrl":null,"url":null,"abstract":"<p><p>The flicker stimulus is a visual stimulus of intermittent illumination. A flicker stimulus can appear flickering or steady to a human subject, depending on the physical parameters associated with the stimulus. When the flickering light appears steady, flicker fusion is said to have occurred. This work aims to bridge the gap between the psychophysics of flicker fusion and the electrophysiology associated with flicker stimulus through a Deep Learning based computational model of flicker perception. Convolutional Recurrent Neural Networks (CRNNs) were trained with psychophysics data of flicker stimulus obtained from a human subject. We claim that many of the reported features of electrophysiology of the flicker stimulus, including the presence of fundamentals and harmonics of the stimulus, can be explained as the result of a temporal convolution operation on the flicker stimulus. We further show that the convolution layer output of a CRNN trained with psychophysics data is more responsive to specific frequencies as in human EEG response to flicker, and the convolution layer of a trained CRNN can give a nearly sinusoidal output for 10 hertz flicker stimulus as reported for some human subjects.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"18"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236830/pdf/","citationCount":"0","resultStr":"{\"title\":\"A deep learning based cognitive model to probe the relation between psychophysics and electrophysiology of flicker stimulus.\",\"authors\":\"Keerthi S Chandran, Kuntal Ghosh\",\"doi\":\"10.1186/s40708-024-00231-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The flicker stimulus is a visual stimulus of intermittent illumination. A flicker stimulus can appear flickering or steady to a human subject, depending on the physical parameters associated with the stimulus. When the flickering light appears steady, flicker fusion is said to have occurred. This work aims to bridge the gap between the psychophysics of flicker fusion and the electrophysiology associated with flicker stimulus through a Deep Learning based computational model of flicker perception. Convolutional Recurrent Neural Networks (CRNNs) were trained with psychophysics data of flicker stimulus obtained from a human subject. We claim that many of the reported features of electrophysiology of the flicker stimulus, including the presence of fundamentals and harmonics of the stimulus, can be explained as the result of a temporal convolution operation on the flicker stimulus. We further show that the convolution layer output of a CRNN trained with psychophysics data is more responsive to specific frequencies as in human EEG response to flicker, and the convolution layer of a trained CRNN can give a nearly sinusoidal output for 10 hertz flicker stimulus as reported for some human subjects.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"11 1\",\"pages\":\"18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236830/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00231-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00231-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

闪烁刺激是一种间歇性照明的视觉刺激。对于人来说,闪烁刺激可以是闪烁的,也可以是稳定的,这取决于与刺激相关的物理参数。当闪烁的光显得稳定时,闪烁融合就发生了。这项研究旨在通过基于深度学习的闪烁感知计算模型,缩小闪烁融合的心理物理学与闪烁刺激相关电生理学之间的差距。卷积递归神经网络(CRNN)是利用从人类受试者处获得的闪烁刺激心理物理学数据进行训练的。我们声称,闪烁刺激的许多电生理学特征,包括刺激的基波和谐波的存在,都可以解释为闪烁刺激的时间卷积操作的结果。我们进一步证明,用心理物理学数据训练的 CRNN 的卷积层输出对特定频率的反应更灵敏,就像人类脑电图对闪烁的反应一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning based cognitive model to probe the relation between psychophysics and electrophysiology of flicker stimulus.

The flicker stimulus is a visual stimulus of intermittent illumination. A flicker stimulus can appear flickering or steady to a human subject, depending on the physical parameters associated with the stimulus. When the flickering light appears steady, flicker fusion is said to have occurred. This work aims to bridge the gap between the psychophysics of flicker fusion and the electrophysiology associated with flicker stimulus through a Deep Learning based computational model of flicker perception. Convolutional Recurrent Neural Networks (CRNNs) were trained with psychophysics data of flicker stimulus obtained from a human subject. We claim that many of the reported features of electrophysiology of the flicker stimulus, including the presence of fundamentals and harmonics of the stimulus, can be explained as the result of a temporal convolution operation on the flicker stimulus. We further show that the convolution layer output of a CRNN trained with psychophysics data is more responsive to specific frequencies as in human EEG response to flicker, and the convolution layer of a trained CRNN can give a nearly sinusoidal output for 10 hertz flicker stimulus as reported for some human subjects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信