成对距离和多重最优问题

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Journal of Computational Biology Pub Date : 2024-07-01 Epub Date: 2024-07-10 DOI:10.1089/cmb.2023.0382
Ran Libeskind-Hadas
{"title":"成对距离和多重最优问题","authors":"Ran Libeskind-Hadas","doi":"10.1089/cmb.2023.0382","DOIUrl":null,"url":null,"abstract":"<p><p>Discrete optimization problems arise in many biological contexts and, in many cases, we seek to make inferences from the optimal solutions. However, the number of optimal solutions is frequently very large and making inferences from any single solution may result in conclusions that are not supported by other optimal solutions. We describe a general approach for efficiently (polynomial time) and exactly (without sampling) computing statistics on the space of optimal solutions. These statistics provide insights into the space of optimal solutions that can be used to support the use of a single optimum (e.g., when the optimal solutions are similar) or justify the need for selecting multiple optima (e.g., when the solution space is large and diverse) from which to make inferences. We demonstrate this approach on two well-known problems and identify the properties of these problems that make them amenable to this method.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"638-650"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pairwise Distances and the Problem of Multiple Optima.\",\"authors\":\"Ran Libeskind-Hadas\",\"doi\":\"10.1089/cmb.2023.0382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Discrete optimization problems arise in many biological contexts and, in many cases, we seek to make inferences from the optimal solutions. However, the number of optimal solutions is frequently very large and making inferences from any single solution may result in conclusions that are not supported by other optimal solutions. We describe a general approach for efficiently (polynomial time) and exactly (without sampling) computing statistics on the space of optimal solutions. These statistics provide insights into the space of optimal solutions that can be used to support the use of a single optimum (e.g., when the optimal solutions are similar) or justify the need for selecting multiple optima (e.g., when the solution space is large and diverse) from which to make inferences. We demonstrate this approach on two well-known problems and identify the properties of these problems that make them amenable to this method.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"638-650\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2023.0382\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0382","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

离散优化问题出现在许多生物环境中,在许多情况下,我们试图从最优解中进行推断。然而,最优解的数量往往非常庞大,根据任何一个最优解进行推断都可能得出其他最优解所不支持的结论。我们介绍了一种高效(多项式时间)、精确(无需采样)计算最优解空间统计数据的通用方法。这些统计数据提供了对最优解空间的洞察力,可用于支持使用单一最优解(例如,当最优解相似时),或证明选择多个最优解的必要性(例如,当最优解空间巨大且多样化时),并据此做出推论。我们在两个众所周知的问题上演示了这种方法,并确定了这些问题的特性,使它们适合采用这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pairwise Distances and the Problem of Multiple Optima.

Discrete optimization problems arise in many biological contexts and, in many cases, we seek to make inferences from the optimal solutions. However, the number of optimal solutions is frequently very large and making inferences from any single solution may result in conclusions that are not supported by other optimal solutions. We describe a general approach for efficiently (polynomial time) and exactly (without sampling) computing statistics on the space of optimal solutions. These statistics provide insights into the space of optimal solutions that can be used to support the use of a single optimum (e.g., when the optimal solutions are similar) or justify the need for selecting multiple optima (e.g., when the solution space is large and diverse) from which to make inferences. We demonstrate this approach on two well-known problems and identify the properties of these problems that make them amenable to this method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信