溴鼠灵对弓形虫的体外和体内活性评估及作用模式。

IF 4.1 2区 医学 Q1 PARASITOLOGY
Yanhua Qiu , Bintao Zhai , Yubin Bai , Hongling Lin , Lingyu Wu , Wei Luo , Mengyan Shi , Shulin Chen , Jiyu Zhang
{"title":"溴鼠灵对弓形虫的体外和体内活性评估及作用模式。","authors":"Yanhua Qiu ,&nbsp;Bintao Zhai ,&nbsp;Yubin Bai ,&nbsp;Hongling Lin ,&nbsp;Lingyu Wu ,&nbsp;Wei Luo ,&nbsp;Mengyan Shi ,&nbsp;Shulin Chen ,&nbsp;Jiyu Zhang","doi":"10.1016/j.ijpddr.2024.100552","DOIUrl":null,"url":null,"abstract":"<div><p><em>Toxoplasma gondii</em> (<em>T. gondii</em>) is a highly successful global parasite, infecting about one-third of the world's population and significantly affecting human life and the economy. However, current drugs for toxoplasmosis treatment have considerable side effects, and there is no specific drug to meet current needs. This study aims to evaluate the anti-<em>T. gondii</em> activity of broxaldine (BRO) <em>in vitro</em> and <em>in vivo</em> and explore its mechanism of action. Our results showed that compared to the control group, the invasion rate of tachyzoites in the 4 μg/mL BRO group was only 14.31%, and the proliferation rate of tachyzoites in host cells was only 1.23%. Furthermore, BRO disrupted the lytic cycle of <em>T. gondii</em> and reduced the size and number of cysts <em>in vitro</em>. A mouse model of acute toxoplasmosis reported a 41.5% survival rate after BRO treatment, with reduced parasite load in tissues and blood. The subcellular structure of <em>T. gondii</em> was observed, including disintegration of <em>T. gondii</em>, mitochondrial swelling, increased liposomes, and the presence of autophagic lysosomes. Further investigation revealed enhanced autophagy, increased neutral lipids, and decreased mitochondrial membrane potential in <em>T. gondii</em> treated with BRO. The results also showed a significant decrease in ATP levels. Overall, BRO demonstrates good anti-<em>T. gondii</em> activity <em>in vitro</em> and <em>in vivo</em>; therefore, it has the potential to be used as a lead compound for anti-<em>T. gondii</em> treatment.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"25 ","pages":"Article 100552"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211320724000332/pdfft?md5=ea67480b952bf320577dc0399ea13b71&pid=1-s2.0-S2211320724000332-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo activity evaluation and mode of action of broxaldine on Toxoplasma gondii\",\"authors\":\"Yanhua Qiu ,&nbsp;Bintao Zhai ,&nbsp;Yubin Bai ,&nbsp;Hongling Lin ,&nbsp;Lingyu Wu ,&nbsp;Wei Luo ,&nbsp;Mengyan Shi ,&nbsp;Shulin Chen ,&nbsp;Jiyu Zhang\",\"doi\":\"10.1016/j.ijpddr.2024.100552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Toxoplasma gondii</em> (<em>T. gondii</em>) is a highly successful global parasite, infecting about one-third of the world's population and significantly affecting human life and the economy. However, current drugs for toxoplasmosis treatment have considerable side effects, and there is no specific drug to meet current needs. This study aims to evaluate the anti-<em>T. gondii</em> activity of broxaldine (BRO) <em>in vitro</em> and <em>in vivo</em> and explore its mechanism of action. Our results showed that compared to the control group, the invasion rate of tachyzoites in the 4 μg/mL BRO group was only 14.31%, and the proliferation rate of tachyzoites in host cells was only 1.23%. Furthermore, BRO disrupted the lytic cycle of <em>T. gondii</em> and reduced the size and number of cysts <em>in vitro</em>. A mouse model of acute toxoplasmosis reported a 41.5% survival rate after BRO treatment, with reduced parasite load in tissues and blood. The subcellular structure of <em>T. gondii</em> was observed, including disintegration of <em>T. gondii</em>, mitochondrial swelling, increased liposomes, and the presence of autophagic lysosomes. Further investigation revealed enhanced autophagy, increased neutral lipids, and decreased mitochondrial membrane potential in <em>T. gondii</em> treated with BRO. The results also showed a significant decrease in ATP levels. Overall, BRO demonstrates good anti-<em>T. gondii</em> activity <em>in vitro</em> and <em>in vivo</em>; therefore, it has the potential to be used as a lead compound for anti-<em>T. gondii</em> treatment.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"25 \",\"pages\":\"Article 100552\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000332/pdfft?md5=ea67480b952bf320577dc0399ea13b71&pid=1-s2.0-S2211320724000332-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000332\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320724000332","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

弓形虫(T. gondii)是一种非常成功的全球性寄生虫,感染了全球约三分之一的人口,对人类生活和经济造成了重大影响。然而,目前治疗弓形虫病的药物有相当大的副作用,而且还没有一种特效药物能满足当前的需要。本研究旨在评估布洛沙定(BRO)在体外和体内的抗弓形虫活性,并探讨其作用机制。结果表明,与对照组相比,4 μg/mL BRO 组速虫的侵袭率仅为 14.31%,速虫在宿主细胞中的增殖率仅为 1.23%。此外,BRO 还能破坏淋球菌的溶解周期,减少体外包囊的大小和数量。据报道,急性弓形虫病小鼠模型经 BRO 治疗后存活率为 41.5%,组织和血液中的寄生虫量减少。观察到弓形虫的亚细胞结构,包括弓形虫解体、线粒体肿胀、脂质体增加以及自噬溶酶体的存在。进一步研究发现,用 BRO 处理的淋球菌自噬能力增强,中性脂质增加,线粒体膜电位降低。结果还显示 ATP 水平明显下降。总之,BRO 在体外和体内都表现出了良好的抗淋病活性;因此,它有可能被用作抗淋病治疗的先导化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In vitro and in vivo activity evaluation and mode of action of broxaldine on Toxoplasma gondii

In vitro and in vivo activity evaluation and mode of action of broxaldine on Toxoplasma gondii

Toxoplasma gondii (T. gondii) is a highly successful global parasite, infecting about one-third of the world's population and significantly affecting human life and the economy. However, current drugs for toxoplasmosis treatment have considerable side effects, and there is no specific drug to meet current needs. This study aims to evaluate the anti-T. gondii activity of broxaldine (BRO) in vitro and in vivo and explore its mechanism of action. Our results showed that compared to the control group, the invasion rate of tachyzoites in the 4 μg/mL BRO group was only 14.31%, and the proliferation rate of tachyzoites in host cells was only 1.23%. Furthermore, BRO disrupted the lytic cycle of T. gondii and reduced the size and number of cysts in vitro. A mouse model of acute toxoplasmosis reported a 41.5% survival rate after BRO treatment, with reduced parasite load in tissues and blood. The subcellular structure of T. gondii was observed, including disintegration of T. gondii, mitochondrial swelling, increased liposomes, and the presence of autophagic lysosomes. Further investigation revealed enhanced autophagy, increased neutral lipids, and decreased mitochondrial membrane potential in T. gondii treated with BRO. The results also showed a significant decrease in ATP levels. Overall, BRO demonstrates good anti-T. gondii activity in vitro and in vivo; therefore, it has the potential to be used as a lead compound for anti-T. gondii treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.50%
发文量
31
审稿时长
48 days
期刊介绍: The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信