{"title":"纯电偶极子和混合第一超极化率的三维表示法:修正的单位球表示法","authors":"Andrea Bonvicini, Benoît Champagne","doi":"10.1002/jcc.27446","DOIUrl":null,"url":null,"abstract":"<p>In this work, the theory of the modified unit sphere representation (mUSR) has been proposed as a computational tool suitable for the three-dimensional representation of the pure electric-dipole [<span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>β</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math>] as well as of the mixed electric-dipole/magnetic-dipole [<span></span><math>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>J</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math> and <span></span><math>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>J</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math>] or electric-dipole/electric-quadrupole [<span></span><math>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>K</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n <mi>o</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math> and <span></span><math>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>K</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n <mi>o</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math>] first hyperpolarizabilities. These five quantities are Cartesian tensors and they are responsible for the chiral signal in the chiroptical version of the hyper-Rayleigh scattering (HRS) spectroscopy, namely the HRS optical activity (HRS-OA) spectroscopy. For the first time, for each hyperpolarizability, alongside with the three-dimensional representation of the whole (i.e., reducible) Cartesian tensors, the mUSRs are developed for each of the irreducible Cartesian tensors (ICTs) that constitute them. This scheme has been applied to a series of three (chiral) hexahelicene molecules containing different degrees of electron-withdrawing (quinone) groups and characterized by the same (positive) handedness. For these molecules, the mUSR shows that, upon substitution, the most remarkable qualitative and semi-quantitative (enhancement of the molecular responses) effects are obtained for the pure electric-dipole and for the mixed electric-dipole/magnetic-dipole hyperpolarizabilities.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 30","pages":"2547-2557"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional representation of the pure electric-dipole and the mixed first hyperpolarizabilities: The modified unit sphere representation\",\"authors\":\"Andrea Bonvicini, Benoît Champagne\",\"doi\":\"10.1002/jcc.27446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the theory of the modified unit sphere representation (mUSR) has been proposed as a computational tool suitable for the three-dimensional representation of the pure electric-dipole [<span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math>] as well as of the mixed electric-dipole/magnetic-dipole [<span></span><math>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>J</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math> and <span></span><math>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>J</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math>] or electric-dipole/electric-quadrupole [<span></span><math>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n <mi>o</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math> and <span></span><math>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n <mi>o</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math>] first hyperpolarizabilities. These five quantities are Cartesian tensors and they are responsible for the chiral signal in the chiroptical version of the hyper-Rayleigh scattering (HRS) spectroscopy, namely the HRS optical activity (HRS-OA) spectroscopy. For the first time, for each hyperpolarizability, alongside with the three-dimensional representation of the whole (i.e., reducible) Cartesian tensors, the mUSRs are developed for each of the irreducible Cartesian tensors (ICTs) that constitute them. This scheme has been applied to a series of three (chiral) hexahelicene molecules containing different degrees of electron-withdrawing (quinone) groups and characterized by the same (positive) handedness. For these molecules, the mUSR shows that, upon substitution, the most remarkable qualitative and semi-quantitative (enhancement of the molecular responses) effects are obtained for the pure electric-dipole and for the mixed electric-dipole/magnetic-dipole hyperpolarizabilities.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"45 30\",\"pages\":\"2547-2557\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27446\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27446","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Three-dimensional representation of the pure electric-dipole and the mixed first hyperpolarizabilities: The modified unit sphere representation
In this work, the theory of the modified unit sphere representation (mUSR) has been proposed as a computational tool suitable for the three-dimensional representation of the pure electric-dipole [] as well as of the mixed electric-dipole/magnetic-dipole [ and ] or electric-dipole/electric-quadrupole [ and ] first hyperpolarizabilities. These five quantities are Cartesian tensors and they are responsible for the chiral signal in the chiroptical version of the hyper-Rayleigh scattering (HRS) spectroscopy, namely the HRS optical activity (HRS-OA) spectroscopy. For the first time, for each hyperpolarizability, alongside with the three-dimensional representation of the whole (i.e., reducible) Cartesian tensors, the mUSRs are developed for each of the irreducible Cartesian tensors (ICTs) that constitute them. This scheme has been applied to a series of three (chiral) hexahelicene molecules containing different degrees of electron-withdrawing (quinone) groups and characterized by the same (positive) handedness. For these molecules, the mUSR shows that, upon substitution, the most remarkable qualitative and semi-quantitative (enhancement of the molecular responses) effects are obtained for the pure electric-dipole and for the mixed electric-dipole/magnetic-dipole hyperpolarizabilities.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.