纯电偶极子和混合第一超极化率的三维表示法:修正的单位球表示法

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Andrea Bonvicini, Benoît Champagne
{"title":"纯电偶极子和混合第一超极化率的三维表示法:修正的单位球表示法","authors":"Andrea Bonvicini,&nbsp;Benoît Champagne","doi":"10.1002/jcc.27446","DOIUrl":null,"url":null,"abstract":"<p>In this work, the theory of the modified unit sphere representation (mUSR) has been proposed as a computational tool suitable for the three-dimensional representation of the pure electric-dipole [<span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>β</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math>] as well as of the mixed electric-dipole/magnetic-dipole [<span></span><math>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>J</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math> and <span></span><math>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>J</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math>] or electric-dipole/electric-quadrupole [<span></span><math>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>K</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n <mi>o</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math> and <span></span><math>\n <mrow>\n <msup>\n <mo> </mo>\n <mrow>\n <mi>β</mi>\n </mrow>\n </msup>\n <msub>\n <mrow>\n <mi>K</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n <mi>μ</mi>\n <mi>ν</mi>\n <mi>o</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ω</mi>\n <mo>;</mo>\n <mi>ω</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow></math>] first hyperpolarizabilities. These five quantities are Cartesian tensors and they are responsible for the chiral signal in the chiroptical version of the hyper-Rayleigh scattering (HRS) spectroscopy, namely the HRS optical activity (HRS-OA) spectroscopy. For the first time, for each hyperpolarizability, alongside with the three-dimensional representation of the whole (i.e., reducible) Cartesian tensors, the mUSRs are developed for each of the irreducible Cartesian tensors (ICTs) that constitute them. This scheme has been applied to a series of three (chiral) hexahelicene molecules containing different degrees of electron-withdrawing (quinone) groups and characterized by the same (positive) handedness. For these molecules, the mUSR shows that, upon substitution, the most remarkable qualitative and semi-quantitative (enhancement of the molecular responses) effects are obtained for the pure electric-dipole and for the mixed electric-dipole/magnetic-dipole hyperpolarizabilities.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 30","pages":"2547-2557"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional representation of the pure electric-dipole and the mixed first hyperpolarizabilities: The modified unit sphere representation\",\"authors\":\"Andrea Bonvicini,&nbsp;Benoît Champagne\",\"doi\":\"10.1002/jcc.27446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, the theory of the modified unit sphere representation (mUSR) has been proposed as a computational tool suitable for the three-dimensional representation of the pure electric-dipole [<span></span><math>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math>] as well as of the mixed electric-dipole/magnetic-dipole [<span></span><math>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>J</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math> and <span></span><math>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>J</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math>] or electric-dipole/electric-quadrupole [<span></span><math>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n <mi>o</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math> and <span></span><math>\\n <mrow>\\n <msup>\\n <mo> </mo>\\n <mrow>\\n <mi>β</mi>\\n </mrow>\\n </msup>\\n <msub>\\n <mrow>\\n <mi>K</mi>\\n </mrow>\\n <mrow>\\n <mi>λ</mi>\\n <mi>μ</mi>\\n <mi>ν</mi>\\n <mi>o</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>ω</mi>\\n <mo>;</mo>\\n <mi>ω</mi>\\n <mo>,</mo>\\n <mi>ω</mi>\\n <mo>)</mo>\\n </mrow></math>] first hyperpolarizabilities. These five quantities are Cartesian tensors and they are responsible for the chiral signal in the chiroptical version of the hyper-Rayleigh scattering (HRS) spectroscopy, namely the HRS optical activity (HRS-OA) spectroscopy. For the first time, for each hyperpolarizability, alongside with the three-dimensional representation of the whole (i.e., reducible) Cartesian tensors, the mUSRs are developed for each of the irreducible Cartesian tensors (ICTs) that constitute them. This scheme has been applied to a series of three (chiral) hexahelicene molecules containing different degrees of electron-withdrawing (quinone) groups and characterized by the same (positive) handedness. For these molecules, the mUSR shows that, upon substitution, the most remarkable qualitative and semi-quantitative (enhancement of the molecular responses) effects are obtained for the pure electric-dipole and for the mixed electric-dipole/magnetic-dipole hyperpolarizabilities.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"45 30\",\"pages\":\"2547-2557\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27446\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27446","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,提出了修正单位球表示(mUSR)理论,作为适合纯电偶极子 [ β λ μ ν ( - 2 ω ;ω , ω ) $$ {\beta}_{\lambda \mu \nu}\left(-2\omega; \omega, \omega \right) $$ ]以及混合电偶极子/磁偶极子 [ α J λ μ ν ( - 2 ω ; ω , ω ) $$ {}^{\alpha }{J}_{\lambda \mu \nu}\left(-2\omega, \omega, \omega \right) $$ ];\omega, \omega \right) $$ 和 β J λ μ ν ( - 2 ω ; ω , ω ) $$ {}^{\beta }{J}_{lambda \mu \nu}\left(-2\omega; \omega, \omega \right) $$ ] 或电偶极子/电四极子 [ α K λ μ ν o ( - 2 ω ;ω , ω ) $$ {}^{α }{K}_{\lambda \mu \nu o}\left(-2\omega; \omega, \omega \right) $$ 和 β K λ μ ν o ( - 2 ω ;ω , ω ) $$ {}^{\beta }{K}_{\lambda \mu \nu o}\left(-2\omega; \omega, \omega \right) $$ ] 第一超极化率。这五个量是笛卡尔张量,它们在超瑞利散射(HRS)光谱的气韵学版本,即 HRS 光学活动(HRS-OA)光谱中负责手性信号。除了整个(即可还原的)笛卡尔张量的三维表示之外,还首次针对每个超极化率,为构成它们的每个不可还原笛卡尔张量(ICTs)开发了 mUSRs。这一方案已被应用于一系列含有不同程度的抽电子(醌)基团并具有相同(正)手性特征的三种(手性)六烯分子。对于这些分子,mUSR 显示,在发生置换时,纯电偶极性和电偶极性/磁偶极性混合超极化率会产生最显著的定性和半定量(分子反应增强)效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional representation of the pure electric-dipole and the mixed first hyperpolarizabilities: The modified unit sphere representation

In this work, the theory of the modified unit sphere representation (mUSR) has been proposed as a computational tool suitable for the three-dimensional representation of the pure electric-dipole [ β λ μ ν ( 2 ω ; ω , ω ) ] as well as of the mixed electric-dipole/magnetic-dipole [ α J λ μ ν ( 2 ω ; ω , ω ) and β J λ μ ν ( 2 ω ; ω , ω ) ] or electric-dipole/electric-quadrupole [ α K λ μ ν o ( 2 ω ; ω , ω ) and β K λ μ ν o ( 2 ω ; ω , ω ) ] first hyperpolarizabilities. These five quantities are Cartesian tensors and they are responsible for the chiral signal in the chiroptical version of the hyper-Rayleigh scattering (HRS) spectroscopy, namely the HRS optical activity (HRS-OA) spectroscopy. For the first time, for each hyperpolarizability, alongside with the three-dimensional representation of the whole (i.e., reducible) Cartesian tensors, the mUSRs are developed for each of the irreducible Cartesian tensors (ICTs) that constitute them. This scheme has been applied to a series of three (chiral) hexahelicene molecules containing different degrees of electron-withdrawing (quinone) groups and characterized by the same (positive) handedness. For these molecules, the mUSR shows that, upon substitution, the most remarkable qualitative and semi-quantitative (enhancement of the molecular responses) effects are obtained for the pure electric-dipole and for the mixed electric-dipole/magnetic-dipole hyperpolarizabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信