利用弦图进行量子-古典混合机器学习

Alexander Koziell-Pipe, Aleks Kissinger
{"title":"利用弦图进行量子-古典混合机器学习","authors":"Alexander Koziell-Pipe, Aleks Kissinger","doi":"arxiv-2407.03673","DOIUrl":null,"url":null,"abstract":"Central to near-term quantum machine learning is the use of hybrid\nquantum-classical algorithms. This paper develops a formal framework for\ndescribing these algorithms in terms of string diagrams: a key step towards\nintegrating these hybrid algorithms into existing work using string diagrams\nfor machine learning and differentiable programming. A notable feature of our\nstring diagrams is the use of functor boxes, which correspond to a\nquantum-classical interfaces. The functor used is a lax monoidal functor\nembedding the quantum systems into classical, and the lax monoidality imposes\nrestrictions on the string diagrams when extracting classical data from quantum\nsystems via measurement. In this way, our framework provides initial steps\ntoward a denotational semantics for hybrid quantum machine learning algorithms\nthat captures important features of quantum-classical interactions.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Quantum-Classical Machine Learning with String Diagrams\",\"authors\":\"Alexander Koziell-Pipe, Aleks Kissinger\",\"doi\":\"arxiv-2407.03673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Central to near-term quantum machine learning is the use of hybrid\\nquantum-classical algorithms. This paper develops a formal framework for\\ndescribing these algorithms in terms of string diagrams: a key step towards\\nintegrating these hybrid algorithms into existing work using string diagrams\\nfor machine learning and differentiable programming. A notable feature of our\\nstring diagrams is the use of functor boxes, which correspond to a\\nquantum-classical interfaces. The functor used is a lax monoidal functor\\nembedding the quantum systems into classical, and the lax monoidality imposes\\nrestrictions on the string diagrams when extracting classical data from quantum\\nsystems via measurement. In this way, our framework provides initial steps\\ntoward a denotational semantics for hybrid quantum machine learning algorithms\\nthat captures important features of quantum-classical interactions.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近期量子机器学习的核心是使用量子-经典混合算法。本文开发了一个用字符串图描述这些算法的形式框架:这是将这些混合算法整合到现有的使用字符串图进行机器学习和可微分编程的工作中的关键一步。我们的字符串图的一个显著特点是使用了与经典接口相对应的函数框。在通过测量从量子系统中提取经典数据时,所使用的函子是将量子系统嵌入经典系统的宽松一元函子,而宽松一元性对弦图施加了限制。这样,我们的框架为混合量子机器学习算法提供了初步的描述性语义,它捕捉到了量子-经典相互作用的重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Quantum-Classical Machine Learning with String Diagrams
Central to near-term quantum machine learning is the use of hybrid quantum-classical algorithms. This paper develops a formal framework for describing these algorithms in terms of string diagrams: a key step towards integrating these hybrid algorithms into existing work using string diagrams for machine learning and differentiable programming. A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces. The functor used is a lax monoidal functor embedding the quantum systems into classical, and the lax monoidality imposes restrictions on the string diagrams when extracting classical data from quantum systems via measurement. In this way, our framework provides initial steps toward a denotational semantics for hybrid quantum machine learning algorithms that captures important features of quantum-classical interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信