用最小生成树进行聚类:它能有多好?

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Marek Gagolewski, Anna Cena, Maciej Bartoszuk, Łukasz Brzozowski
{"title":"用最小生成树进行聚类:它能有多好?","authors":"Marek Gagolewski, Anna Cena, Maciej Bartoszuk, Łukasz Brzozowski","doi":"10.1007/s00357-024-09483-1","DOIUrl":null,"url":null,"abstract":"<p>Minimum spanning trees (MSTs) provide a convenient representation of datasets in numerous pattern recognition activities. Moreover, they are relatively fast to compute. In this paper, we quantify the extent to which they are meaningful in low-dimensional partitional data clustering tasks. By identifying the upper bounds for the agreement between the best (oracle) algorithm and the expert labels from a large battery of benchmark data, we discover that MST methods can be very competitive. Next, we review, study, extend, and generalise a few existing, state-of-the-art MST-based partitioning schemes. This leads to some new noteworthy approaches. Overall, the Genie and the information-theoretic methods often outperform the non-MST algorithms such as K-means, Gaussian mixtures, spectral clustering, Birch, density-based, and classical hierarchical agglomerative procedures. Nevertheless, we identify that there is still some room for improvement, and thus the development of novel algorithms is encouraged.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"4 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering with Minimum Spanning Trees: How Good Can It Be?\",\"authors\":\"Marek Gagolewski, Anna Cena, Maciej Bartoszuk, Łukasz Brzozowski\",\"doi\":\"10.1007/s00357-024-09483-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Minimum spanning trees (MSTs) provide a convenient representation of datasets in numerous pattern recognition activities. Moreover, they are relatively fast to compute. In this paper, we quantify the extent to which they are meaningful in low-dimensional partitional data clustering tasks. By identifying the upper bounds for the agreement between the best (oracle) algorithm and the expert labels from a large battery of benchmark data, we discover that MST methods can be very competitive. Next, we review, study, extend, and generalise a few existing, state-of-the-art MST-based partitioning schemes. This leads to some new noteworthy approaches. Overall, the Genie and the information-theoretic methods often outperform the non-MST algorithms such as K-means, Gaussian mixtures, spectral clustering, Birch, density-based, and classical hierarchical agglomerative procedures. Nevertheless, we identify that there is still some room for improvement, and thus the development of novel algorithms is encouraged.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-024-09483-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-024-09483-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在许多模式识别活动中,最小生成树(MST)都能方便地表示数据集。此外,它们的计算速度相对较快。在本文中,我们量化了它们在低维分区数据聚类任务中的意义程度。通过确定最佳(oracle)算法与来自大量基准数据的专家标签之间的一致性上限,我们发现 MST 方法具有很强的竞争力。接下来,我们回顾、研究、扩展并推广了几种现有的、最先进的基于 MST 的分区方案。这就产生了一些新的值得注意的方法。总体而言,Genie 和信息论方法往往优于非 MST 算法,如 K-means、高斯混合物、频谱聚类、Birch、基于密度和经典分层聚类程序。尽管如此,我们认为仍有改进的余地,因此鼓励开发新的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Clustering with Minimum Spanning Trees: How Good Can It Be?

Clustering with Minimum Spanning Trees: How Good Can It Be?

Minimum spanning trees (MSTs) provide a convenient representation of datasets in numerous pattern recognition activities. Moreover, they are relatively fast to compute. In this paper, we quantify the extent to which they are meaningful in low-dimensional partitional data clustering tasks. By identifying the upper bounds for the agreement between the best (oracle) algorithm and the expert labels from a large battery of benchmark data, we discover that MST methods can be very competitive. Next, we review, study, extend, and generalise a few existing, state-of-the-art MST-based partitioning schemes. This leads to some new noteworthy approaches. Overall, the Genie and the information-theoretic methods often outperform the non-MST algorithms such as K-means, Gaussian mixtures, spectral clustering, Birch, density-based, and classical hierarchical agglomerative procedures. Nevertheless, we identify that there is still some room for improvement, and thus the development of novel algorithms is encouraged.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信