{"title":"论几乎接触计量几何中的 2 Killing 向量场","authors":"Adara M. Blaga, Cihan Özgür","doi":"10.1007/s10998-024-00603-3","DOIUrl":null,"url":null,"abstract":"<p>We characterize a 2-Killing Reeb vector field of a contact metric manifold, we describe the 2-Killing vector fields pointwise collinear with the Reeb vector field of the structure, and we study them in the general Riemannian case. On the other hand, we obtain some properties when the Reeb vector field is 2-Killing and the manifold is a Ricci soliton, a Yamabe soliton, a hyperbolic Ricci soliton, or a hyperbolic Yamabe soliton with potential vector field pointwise collinear with the Reeb vector field of the structure.\n</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"9 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On 2-Killing vector fields in almost contact metric geometry\",\"authors\":\"Adara M. Blaga, Cihan Özgür\",\"doi\":\"10.1007/s10998-024-00603-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterize a 2-Killing Reeb vector field of a contact metric manifold, we describe the 2-Killing vector fields pointwise collinear with the Reeb vector field of the structure, and we study them in the general Riemannian case. On the other hand, we obtain some properties when the Reeb vector field is 2-Killing and the manifold is a Ricci soliton, a Yamabe soliton, a hyperbolic Ricci soliton, or a hyperbolic Yamabe soliton with potential vector field pointwise collinear with the Reeb vector field of the structure.\\n</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00603-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00603-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On 2-Killing vector fields in almost contact metric geometry
We characterize a 2-Killing Reeb vector field of a contact metric manifold, we describe the 2-Killing vector fields pointwise collinear with the Reeb vector field of the structure, and we study them in the general Riemannian case. On the other hand, we obtain some properties when the Reeb vector field is 2-Killing and the manifold is a Ricci soliton, a Yamabe soliton, a hyperbolic Ricci soliton, or a hyperbolic Yamabe soliton with potential vector field pointwise collinear with the Reeb vector field of the structure.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.