B. P. E. Tee, B. Ganly, J. D. Mcllquham, P. Giang, Y. Van Haarlem
{"title":"从第一原理拟合 X 射线荧光光谱中的康普顿峰","authors":"B. P. E. Tee, B. Ganly, J. D. Mcllquham, P. Giang, Y. Van Haarlem","doi":"10.1002/xrs.3441","DOIUrl":null,"url":null,"abstract":"A method to fit Compton profiles in x‐ray fluorescence (XRF) spectroscopy using a line shape calculated from first principles is proposed. The fitting procedure incorporates the Compton profile calculations and the double Compton scattering line shape algorithm. The results demonstrate the effectiveness of the fitting approach in accurately describing the measured scattering spectra, with good agreement observed between the fit and experimental data. The findings of this study can be used for more accurate characterization of the scattering peaks in XRF spectroscopy.","PeriodicalId":23867,"journal":{"name":"X-Ray Spectrometry","volume":"61 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitting Compton peaks from first principles in x‐ray fluorescence spectra\",\"authors\":\"B. P. E. Tee, B. Ganly, J. D. Mcllquham, P. Giang, Y. Van Haarlem\",\"doi\":\"10.1002/xrs.3441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to fit Compton profiles in x‐ray fluorescence (XRF) spectroscopy using a line shape calculated from first principles is proposed. The fitting procedure incorporates the Compton profile calculations and the double Compton scattering line shape algorithm. The results demonstrate the effectiveness of the fitting approach in accurately describing the measured scattering spectra, with good agreement observed between the fit and experimental data. The findings of this study can be used for more accurate characterization of the scattering peaks in XRF spectroscopy.\",\"PeriodicalId\":23867,\"journal\":{\"name\":\"X-Ray Spectrometry\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"X-Ray Spectrometry\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/xrs.3441\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"X-Ray Spectrometry","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/xrs.3441","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种利用第一原理计算出的线形拟合 X 射线荧光 (XRF) 光谱中康普顿剖面的方法。拟合程序结合了康普顿剖面计算和双康普顿散射线形算法。结果表明,拟合方法能有效准确地描述测量到的散射光谱,拟合结果与实验数据之间具有良好的一致性。这项研究的结果可用于更准确地描述 XRF 光谱中的散射峰。
Fitting Compton peaks from first principles in x‐ray fluorescence spectra
A method to fit Compton profiles in x‐ray fluorescence (XRF) spectroscopy using a line shape calculated from first principles is proposed. The fitting procedure incorporates the Compton profile calculations and the double Compton scattering line shape algorithm. The results demonstrate the effectiveness of the fitting approach in accurately describing the measured scattering spectra, with good agreement observed between the fit and experimental data. The findings of this study can be used for more accurate characterization of the scattering peaks in XRF spectroscopy.
期刊介绍:
X-Ray Spectrometry is devoted to the rapid publication of papers dealing with the theory and application of x-ray spectrometry using electron, x-ray photon, proton, γ and γ-x sources.
Covering advances in techniques, methods and equipment, this established journal provides the ideal platform for the discussion of more sophisticated X-ray analytical methods.
Both wavelength and energy dispersion systems are covered together with a range of data handling methods, from the most simple to very sophisticated software programs. Papers dealing with the application of x-ray spectrometric methods for structural analysis are also featured as well as applications papers covering a wide range of areas such as environmental analysis and monitoring, art and archaelogical studies, mineralogy, forensics, geology, surface science and materials analysis, biomedical and pharmaceutical applications.