融合范畴中的考斯特震颤表示和加布里埃尔定理

Edmund Heng
{"title":"融合范畴中的考斯特震颤表示和加布里埃尔定理","authors":"Edmund Heng","doi":"10.1007/s00029-024-00947-1","DOIUrl":null,"url":null,"abstract":"<p>We introduce a notion of representation for a class of generalised quivers known as <i>Coxeter quivers</i>. These representations are built using fusion categories associated to <span>\\(U_q(\\mathfrak {s}\\mathfrak {l}_2)\\)</span> at roots of unity and we show that many of the classical results on representations of quivers can be generalised to this setting. Namely, we prove a generalised Gabriel’s theorem for Coxeter quivers that encompasses all <i>Coxeter–Dynkin diagrams</i>—including the non-crystallographic types <i>H</i> and <i>I</i>. Moreover, a similar relation between reflection functors and Coxeter theory is used to show that the indecomposable representations correspond bijectively to the (extended) positive roots of Coxeter root systems over fusion rings.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coxeter quiver representations in fusion categories and Gabriel’s theorem\",\"authors\":\"Edmund Heng\",\"doi\":\"10.1007/s00029-024-00947-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a notion of representation for a class of generalised quivers known as <i>Coxeter quivers</i>. These representations are built using fusion categories associated to <span>\\\\(U_q(\\\\mathfrak {s}\\\\mathfrak {l}_2)\\\\)</span> at roots of unity and we show that many of the classical results on representations of quivers can be generalised to this setting. Namely, we prove a generalised Gabriel’s theorem for Coxeter quivers that encompasses all <i>Coxeter–Dynkin diagrams</i>—including the non-crystallographic types <i>H</i> and <i>I</i>. Moreover, a similar relation between reflection functors and Coxeter theory is used to show that the indecomposable representations correspond bijectively to the (extended) positive roots of Coxeter root systems over fusion rings.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00947-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00947-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为一类广义四元组引入了表示的概念,这一类四元组被称为考斯特四元组。这些表示是使用在统一根处与\(U_q(\mathfrak {s}\mathfrak {l}_2)\)相关的融合范畴建立的,我们证明了许多关于四元组表示的经典结果可以推广到这种情形中。也就是说,我们证明了一个广义的加布里埃尔定理,该定理适用于包括非结晶类型 H 和 I 在内的所有 Coxeter-Dynkin 图。此外,我们还利用反射函数与 Coxeter 理论之间的类似关系,证明了不可分解表示与融合环上 Coxeter 根系统的(扩展)正根是双射对应的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coxeter quiver representations in fusion categories and Gabriel’s theorem

Coxeter quiver representations in fusion categories and Gabriel’s theorem

We introduce a notion of representation for a class of generalised quivers known as Coxeter quivers. These representations are built using fusion categories associated to \(U_q(\mathfrak {s}\mathfrak {l}_2)\) at roots of unity and we show that many of the classical results on representations of quivers can be generalised to this setting. Namely, we prove a generalised Gabriel’s theorem for Coxeter quivers that encompasses all Coxeter–Dynkin diagrams—including the non-crystallographic types H and I. Moreover, a similar relation between reflection functors and Coxeter theory is used to show that the indecomposable representations correspond bijectively to the (extended) positive roots of Coxeter root systems over fusion rings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信