安藤扩张的一般化,以及一类 q 对等收缩元组的等距扩张

IF 0.7 4区 数学 Q2 MATHEMATICS
Sibaprasad Barik, Bappa Bisai
{"title":"安藤扩张的一般化,以及一类 q 对等收缩元组的等距扩张","authors":"Sibaprasad Barik, Bappa Bisai","doi":"10.1007/s11785-024-01551-z","DOIUrl":null,"url":null,"abstract":"<p>Given a bounded operator <i>Q</i> on a Hilbert space <span>\\(\\mathcal {H}\\)</span>, a pair of bounded operators <span>\\((T_1,T_2)\\)</span> on <span>\\(\\mathcal {H}\\)</span> is said to be <i>Q</i>-commuting if one of the following holds: </p><span>$$\\begin{aligned} T_1T_2=QT_2T_1 \\text { or }T_1T_2=T_2QT_1 \\text { or }T_1T_2=T_2T_1Q. \\end{aligned}$$</span><p>We give an explicit construction of isometric dilations for pairs of <i>Q</i>-commuting contractions for unitary <i>Q</i>, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88–90, 1963) for pairs of commuting contractions. In particular, for <span>\\(Q=qI_{\\mathcal {H}}\\)</span>, where <i>q</i> is a complex number of modulus 1, this gives, as a corollary, an explicit construction of isometric dilations for pairs of <i>q</i>-commuting contractions, which are well studied. There is an extended notion of <i>q</i>-commutativity for general tuples of operators and it is known that isometric dilation does not hold, in general, for an <i>n</i>-tuple of <i>q</i>-commuting contractions, where <span>\\(n\\ge 3\\)</span>. Generalizing the class of commuting contractions considered by Brehmer (Acta Sci Math (Szeged) 22:106–111, 1961), we construct a class of <i>n</i>-tuples of <i>q</i>-commuting contractions and find isometric dilations explicitly for the class.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"78 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalization of Ando’s Dilation, and Isometric Dilations for a Class of Tuples of q-Commuting Contractions\",\"authors\":\"Sibaprasad Barik, Bappa Bisai\",\"doi\":\"10.1007/s11785-024-01551-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a bounded operator <i>Q</i> on a Hilbert space <span>\\\\(\\\\mathcal {H}\\\\)</span>, a pair of bounded operators <span>\\\\((T_1,T_2)\\\\)</span> on <span>\\\\(\\\\mathcal {H}\\\\)</span> is said to be <i>Q</i>-commuting if one of the following holds: </p><span>$$\\\\begin{aligned} T_1T_2=QT_2T_1 \\\\text { or }T_1T_2=T_2QT_1 \\\\text { or }T_1T_2=T_2T_1Q. \\\\end{aligned}$$</span><p>We give an explicit construction of isometric dilations for pairs of <i>Q</i>-commuting contractions for unitary <i>Q</i>, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88–90, 1963) for pairs of commuting contractions. In particular, for <span>\\\\(Q=qI_{\\\\mathcal {H}}\\\\)</span>, where <i>q</i> is a complex number of modulus 1, this gives, as a corollary, an explicit construction of isometric dilations for pairs of <i>q</i>-commuting contractions, which are well studied. There is an extended notion of <i>q</i>-commutativity for general tuples of operators and it is known that isometric dilation does not hold, in general, for an <i>n</i>-tuple of <i>q</i>-commuting contractions, where <span>\\\\(n\\\\ge 3\\\\)</span>. Generalizing the class of commuting contractions considered by Brehmer (Acta Sci Math (Szeged) 22:106–111, 1961), we construct a class of <i>n</i>-tuples of <i>q</i>-commuting contractions and find isometric dilations explicitly for the class.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01551-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01551-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个希尔伯特空间(Hilbert space)上的有界算子 Q,如果以下条件之一成立,则称(Hilbert space)上的一对有界算子((T_1,T_2))为 Q-commuting: $$\begin{aligned}.T_1T_2=QT_2T_1 (text { 或 }T_1T_2=T_2QT_1 (text { 或 }T_1T_2=T_2T_1Q.\end{aligned}$$We give an explicit construction of isometric dilations for pairs of Q-commuting contractions for unitary Q, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88-90, 1963) for pairs of commuting contractions.特别是,对于 q 为模数 1 的复数的 \(Q=qI_{/mathcal{H}}/),作为一个推论,这给出了对 q 换约收缩的等距扩张的显式构造,这一点研究得很透彻。对于一般的算子元组,有一个扩展的 q-commutativity 概念,而且众所周知,对于 q-commuting contractions 的 n 个元组(其中 \(n\ge 3\) ),等距扩张一般不成立。从布雷默(Acta Sci Math (Szeged) 22:106-111,1961)考虑的换元收缩类出发,我们构造了一类 n 元组 q 换元收缩,并明确地发现了该类的等距扩张。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalization of Ando’s Dilation, and Isometric Dilations for a Class of Tuples of q-Commuting Contractions

Given a bounded operator Q on a Hilbert space \(\mathcal {H}\), a pair of bounded operators \((T_1,T_2)\) on \(\mathcal {H}\) is said to be Q-commuting if one of the following holds:

$$\begin{aligned} T_1T_2=QT_2T_1 \text { or }T_1T_2=T_2QT_1 \text { or }T_1T_2=T_2T_1Q. \end{aligned}$$

We give an explicit construction of isometric dilations for pairs of Q-commuting contractions for unitary Q, which generalizes the isometric dilation of Ando (Acta Sci Math (Szeged) 24:88–90, 1963) for pairs of commuting contractions. In particular, for \(Q=qI_{\mathcal {H}}\), where q is a complex number of modulus 1, this gives, as a corollary, an explicit construction of isometric dilations for pairs of q-commuting contractions, which are well studied. There is an extended notion of q-commutativity for general tuples of operators and it is known that isometric dilation does not hold, in general, for an n-tuple of q-commuting contractions, where \(n\ge 3\). Generalizing the class of commuting contractions considered by Brehmer (Acta Sci Math (Szeged) 22:106–111, 1961), we construct a class of n-tuples of q-commuting contractions and find isometric dilations explicitly for the class.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信