{"title":"碳热扩散反应合成用于高效电吸附水中氟离子的 CrN/碳纳米纤维","authors":"Xuran Yang, Hao Zhang, Jiamin Gao, Yiyuan Yao, Yujun Zhou, Junwen Qi, Yue Yang, Zhigao Zhu, Jiansheng Li","doi":"10.1007/s42765-024-00465-x","DOIUrl":null,"url":null,"abstract":"<div><p>Development of novel electrode materials with the integration of structural and compositional merits can essentially improve the electrosorption performance. Herein, we demonstrate a new strategy, named as carbothermal diffusion reaction synthesis (CDRS), to fabricate binder-free CrN/carbon nanofiber electrodes for efficient electrosorption of fluoride ions from water. The CDRS strategy involves electrospinning MIL-101(Cr) particles with polyacrylonitrile (PAN) to form one-dimensional nanofiber, followed by spatial-confined pyrolysis process in which the nitridation reaction occurred between nitrogen element from PAN and chromium element from MIL-101(Cr), resulting macroscopic, free-standing electrodes with well dispersed ultrafine CrN nanoparticles on porous nitrogen enriched carbon matrix. As expected, the F<sup>−</sup> adsorption capacity reached 47.67 mg g<sup>−1</sup> and there was no decrease in F<sup>−</sup> removal after 70 adsorption regenerations in 50 mg L<sup>−1</sup> F<sup>−</sup> solution at 1.2 V. The adsorption mechanism of F<sup>−</sup> was explored by X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). The enhanced F<sup>−</sup> adsorption capacity was achieved by the reversible Cr<sup>4+</sup>/Cr<sup>3+</sup> redox pair provided by CrN and the electrical double layer capacitance produced by carbon skeleton. This study provides guidance on synergistic modulation of shaping and composition optimization of novel functional materials for electrosorption, catalysis, and supercapacitor applications.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 6","pages":"1969 - 1979"},"PeriodicalIF":17.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbothermal Diffusion Reaction Synthesis of CrN/carbon Nanofiber for Efficient Electrosorption of Fluoride Ions from Water\",\"authors\":\"Xuran Yang, Hao Zhang, Jiamin Gao, Yiyuan Yao, Yujun Zhou, Junwen Qi, Yue Yang, Zhigao Zhu, Jiansheng Li\",\"doi\":\"10.1007/s42765-024-00465-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Development of novel electrode materials with the integration of structural and compositional merits can essentially improve the electrosorption performance. Herein, we demonstrate a new strategy, named as carbothermal diffusion reaction synthesis (CDRS), to fabricate binder-free CrN/carbon nanofiber electrodes for efficient electrosorption of fluoride ions from water. The CDRS strategy involves electrospinning MIL-101(Cr) particles with polyacrylonitrile (PAN) to form one-dimensional nanofiber, followed by spatial-confined pyrolysis process in which the nitridation reaction occurred between nitrogen element from PAN and chromium element from MIL-101(Cr), resulting macroscopic, free-standing electrodes with well dispersed ultrafine CrN nanoparticles on porous nitrogen enriched carbon matrix. As expected, the F<sup>−</sup> adsorption capacity reached 47.67 mg g<sup>−1</sup> and there was no decrease in F<sup>−</sup> removal after 70 adsorption regenerations in 50 mg L<sup>−1</sup> F<sup>−</sup> solution at 1.2 V. The adsorption mechanism of F<sup>−</sup> was explored by X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). The enhanced F<sup>−</sup> adsorption capacity was achieved by the reversible Cr<sup>4+</sup>/Cr<sup>3+</sup> redox pair provided by CrN and the electrical double layer capacitance produced by carbon skeleton. This study provides guidance on synergistic modulation of shaping and composition optimization of novel functional materials for electrosorption, catalysis, and supercapacitor applications.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 6\",\"pages\":\"1969 - 1979\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00465-x\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00465-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Carbothermal Diffusion Reaction Synthesis of CrN/carbon Nanofiber for Efficient Electrosorption of Fluoride Ions from Water
Development of novel electrode materials with the integration of structural and compositional merits can essentially improve the electrosorption performance. Herein, we demonstrate a new strategy, named as carbothermal diffusion reaction synthesis (CDRS), to fabricate binder-free CrN/carbon nanofiber electrodes for efficient electrosorption of fluoride ions from water. The CDRS strategy involves electrospinning MIL-101(Cr) particles with polyacrylonitrile (PAN) to form one-dimensional nanofiber, followed by spatial-confined pyrolysis process in which the nitridation reaction occurred between nitrogen element from PAN and chromium element from MIL-101(Cr), resulting macroscopic, free-standing electrodes with well dispersed ultrafine CrN nanoparticles on porous nitrogen enriched carbon matrix. As expected, the F− adsorption capacity reached 47.67 mg g−1 and there was no decrease in F− removal after 70 adsorption regenerations in 50 mg L−1 F− solution at 1.2 V. The adsorption mechanism of F− was explored by X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). The enhanced F− adsorption capacity was achieved by the reversible Cr4+/Cr3+ redox pair provided by CrN and the electrical double layer capacitance produced by carbon skeleton. This study provides guidance on synergistic modulation of shaping and composition optimization of novel functional materials for electrosorption, catalysis, and supercapacitor applications.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.