双轴定向能否解释迁徙鸣禽的范围扩张?

IF 1.5 3区 生物学 Q1 ORNITHOLOGY
Joe Wynn, Guillermo Fandos, Kira Delmore, Benjamin M. Van Doren, Thord Fransson, Miriam Liedvogel
{"title":"双轴定向能否解释迁徙鸣禽的范围扩张?","authors":"Joe Wynn, Guillermo Fandos, Kira Delmore, Benjamin M. Van Doren, Thord Fransson, Miriam Liedvogel","doi":"10.1111/jav.03196","DOIUrl":null,"url":null,"abstract":"The likelihood of a new migratory route emerging is presumably a function of 1) the associated fitness payoff and 2) the probability that the route arises in the first place. It has been suggested that diametrically opposed ‘reverse' migratory trajectories might be surprisingly common and, if such routes were heritable, it follows that they could underlie the rapid evolution of divergent migratory trajectories. Here, we used Eurasian blackcap (<jats:italic>Sylvia atricapilla</jats:italic>; ‘blackcap') ringing recoveries and geolocator trajectories to investigate whether a recently evolved northwards autumn migratory route – and accompanying rapid northerly wintering range expansion – could be explained by the reversal of each individual's population‐specific traditional southwards migratory direction. We found that northwards autumn migrants were recovered closer to the sites specified by an axis reversal than would be expected by chance, consistent with the rapid evolution of new migratory routes via bi‐axial variation in orientation. We suggest that the surprisingly high probability of axis reversal might explain why birds expand their wintering ranges rapidly and divergently, and propose that understanding how migratory direction is encoded is crucial when characterising the genetic component underlying migration.","PeriodicalId":15278,"journal":{"name":"Journal of Avian Biology","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Could bi‐axial orientation explain range expansion in a migratory songbird?\",\"authors\":\"Joe Wynn, Guillermo Fandos, Kira Delmore, Benjamin M. Van Doren, Thord Fransson, Miriam Liedvogel\",\"doi\":\"10.1111/jav.03196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The likelihood of a new migratory route emerging is presumably a function of 1) the associated fitness payoff and 2) the probability that the route arises in the first place. It has been suggested that diametrically opposed ‘reverse' migratory trajectories might be surprisingly common and, if such routes were heritable, it follows that they could underlie the rapid evolution of divergent migratory trajectories. Here, we used Eurasian blackcap (<jats:italic>Sylvia atricapilla</jats:italic>; ‘blackcap') ringing recoveries and geolocator trajectories to investigate whether a recently evolved northwards autumn migratory route – and accompanying rapid northerly wintering range expansion – could be explained by the reversal of each individual's population‐specific traditional southwards migratory direction. We found that northwards autumn migrants were recovered closer to the sites specified by an axis reversal than would be expected by chance, consistent with the rapid evolution of new migratory routes via bi‐axial variation in orientation. We suggest that the surprisingly high probability of axis reversal might explain why birds expand their wintering ranges rapidly and divergently, and propose that understanding how migratory direction is encoded is crucial when characterising the genetic component underlying migration.\",\"PeriodicalId\":15278,\"journal\":{\"name\":\"Journal of Avian Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Avian Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jav.03196\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORNITHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Avian Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jav.03196","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新迁徙路线出现的可能性可能是以下两个因素的函数:1)相关的适应性回报;2)该路线首先出现的概率。有人认为,截然相反的 "反向 "迁徙轨迹可能出奇地常见,如果这种路线是可遗传的,那么它们就可能是不同迁徙轨迹快速进化的基础。在这里,我们利用欧亚黑冠鸦雀(Sylvia atricapilla;"blackcap")的环状恢复和地理定位器轨迹来研究最近演化出的向北秋季迁徙路线--以及伴随而来的向北越冬范围的迅速扩大--是否可以通过逆转每个个体种群特有的传统向南迁徙方向来解释。我们发现,秋季向北迁徙的个体被发现时距离轴向反转所指定的地点更近,这与通过双轴方向变化快速演化出新的迁徙路线是一致的。我们认为,轴向反转的概率出奇地高,这或许可以解释为什么鸟类会迅速而多样地扩大其越冬范围,并提出了解迁徙方向是如何编码的对于描述迁徙的遗传因素至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Could bi‐axial orientation explain range expansion in a migratory songbird?
The likelihood of a new migratory route emerging is presumably a function of 1) the associated fitness payoff and 2) the probability that the route arises in the first place. It has been suggested that diametrically opposed ‘reverse' migratory trajectories might be surprisingly common and, if such routes were heritable, it follows that they could underlie the rapid evolution of divergent migratory trajectories. Here, we used Eurasian blackcap (Sylvia atricapilla; ‘blackcap') ringing recoveries and geolocator trajectories to investigate whether a recently evolved northwards autumn migratory route – and accompanying rapid northerly wintering range expansion – could be explained by the reversal of each individual's population‐specific traditional southwards migratory direction. We found that northwards autumn migrants were recovered closer to the sites specified by an axis reversal than would be expected by chance, consistent with the rapid evolution of new migratory routes via bi‐axial variation in orientation. We suggest that the surprisingly high probability of axis reversal might explain why birds expand their wintering ranges rapidly and divergently, and propose that understanding how migratory direction is encoded is crucial when characterising the genetic component underlying migration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Avian Biology
Journal of Avian Biology 生物-鸟类学
CiteScore
3.70
自引率
0.00%
发文量
56
审稿时长
3 months
期刊介绍: Journal of Avian Biology publishes empirical and theoretical research in all areas of ornithology, with an emphasis on behavioural ecology, evolution and conservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信