材料点法的接触算法及与有限元法的比较

IF 2.1 3区 地球科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Peng Huang, Dong-huan Liu, Hu Guo, Ke Xie, Qing-ping Zhang, Zhi-fang Deng
{"title":"材料点法的接触算法及与有限元法的比较","authors":"Peng Huang, Dong-huan Liu, Hu Guo, Ke Xie, Qing-ping Zhang, Zhi-fang Deng","doi":"10.1007/s10596-024-10302-0","DOIUrl":null,"url":null,"abstract":"<p>Being a fully Lagrangian particle method, the material point method (MPM) discretizes a material domain by using a collection of material points. The momentum equations in MPM are solved on a predefined regular background grid, so that the grid distortion and entanglement are completely avoided in MPM. The contact algorithm of MPM is developed via the background grid and the impenetrability condition between bodies. The contact algorithm of MPM is applied to solve some impact and perforation problems. This study concerns the validation of the contact algorithm of MPM. Solutions from MPM with the contact algorithm are compared to those from the finite element method (FEM) with the penalty method. For two impact problems, the results from MPM with the contact algorithm are in good agreement with those obtained with the FEM penalty method. For the perforation problem of aluminum plate, the results obtained using MPM with the contact algorithm are better than those from the FEM penalty method. We think that for impact problems without extreme large deformations, it is better to use the FEM penalty method. For impact problems with extreme large deformations, it is better to use the contact algorithm of MPM.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"28 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact algorithm of the material point method and comparison with the finite element method\",\"authors\":\"Peng Huang, Dong-huan Liu, Hu Guo, Ke Xie, Qing-ping Zhang, Zhi-fang Deng\",\"doi\":\"10.1007/s10596-024-10302-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Being a fully Lagrangian particle method, the material point method (MPM) discretizes a material domain by using a collection of material points. The momentum equations in MPM are solved on a predefined regular background grid, so that the grid distortion and entanglement are completely avoided in MPM. The contact algorithm of MPM is developed via the background grid and the impenetrability condition between bodies. The contact algorithm of MPM is applied to solve some impact and perforation problems. This study concerns the validation of the contact algorithm of MPM. Solutions from MPM with the contact algorithm are compared to those from the finite element method (FEM) with the penalty method. For two impact problems, the results from MPM with the contact algorithm are in good agreement with those obtained with the FEM penalty method. For the perforation problem of aluminum plate, the results obtained using MPM with the contact algorithm are better than those from the FEM penalty method. We think that for impact problems without extreme large deformations, it is better to use the FEM penalty method. For impact problems with extreme large deformations, it is better to use the contact algorithm of MPM.</p>\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-024-10302-0\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10302-0","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

作为一种完全拉格朗日粒子法,材料点法(MPM)通过使用材料点集合来离散材料域。MPM 中的动量方程是在预定义的规则背景网格上求解的,因此 MPM 完全避免了网格变形和缠结。MPM 的接触算法是通过背景网格和体与体之间的不可渗透性条件开发出来的。MPM 的接触算法被应用于解决一些冲击和穿孔问题。本研究涉及 MPM 接触算法的验证。使用接触算法的 MPM 解决方案与使用惩罚法的有限元法(FEM)解决方案进行了比较。对于两个冲击问题,采用接触算法的 MPM 与采用有限元惩罚法的 MPM 得出的结果非常一致。对于铝板穿孔问题,使用带接触算法的 MPM 得出的结果优于使用有限元惩罚法得出的结果。我们认为,对于没有极端大变形的冲击问题,最好使用有限元惩罚法。对于有极大变形的冲击问题,最好使用 MPM 的接触算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contact algorithm of the material point method and comparison with the finite element method

Being a fully Lagrangian particle method, the material point method (MPM) discretizes a material domain by using a collection of material points. The momentum equations in MPM are solved on a predefined regular background grid, so that the grid distortion and entanglement are completely avoided in MPM. The contact algorithm of MPM is developed via the background grid and the impenetrability condition between bodies. The contact algorithm of MPM is applied to solve some impact and perforation problems. This study concerns the validation of the contact algorithm of MPM. Solutions from MPM with the contact algorithm are compared to those from the finite element method (FEM) with the penalty method. For two impact problems, the results from MPM with the contact algorithm are in good agreement with those obtained with the FEM penalty method. For the perforation problem of aluminum plate, the results obtained using MPM with the contact algorithm are better than those from the FEM penalty method. We think that for impact problems without extreme large deformations, it is better to use the FEM penalty method. For impact problems with extreme large deformations, it is better to use the contact algorithm of MPM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Geosciences
Computational Geosciences 地学-地球科学综合
CiteScore
6.10
自引率
4.00%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing. Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered. The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信