论半线性演化方程的精确全局可控性

Pub Date : 2024-07-08 DOI:10.1134/s0012266124030091
A. V. Chernov
{"title":"论半线性演化方程的精确全局可控性","authors":"A. V. Chernov","doi":"10.1134/s0012266124030091","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> For the Cauchy problem associated with a controlled semilinear evolution equation with\nan operator (not necessarily bounded) in a Hilbert space, we obtain sufficient conditions for exact\ncontrollability into a given terminal state (and also into given intermediate states at interim time\nmoments) on an arbitrarily fixed (without additional constraints) time interval. Here we use the\nBrowder—Minty theorem and also a chain technology of successive continuation of the solution of\nthe controlled system to intermediate states. As examples, we consider a semilinear\npseudoparabolic equation and a semilinear wave equation.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Exact Global Controllability of a Semilinear Evolution Equation\",\"authors\":\"A. V. Chernov\",\"doi\":\"10.1134/s0012266124030091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> For the Cauchy problem associated with a controlled semilinear evolution equation with\\nan operator (not necessarily bounded) in a Hilbert space, we obtain sufficient conditions for exact\\ncontrollability into a given terminal state (and also into given intermediate states at interim time\\nmoments) on an arbitrarily fixed (without additional constraints) time interval. Here we use the\\nBrowder—Minty theorem and also a chain technology of successive continuation of the solution of\\nthe controlled system to intermediate states. As examples, we consider a semilinear\\npseudoparabolic equation and a semilinear wave equation.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0012266124030091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124030091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 对于与希尔伯特空间中带有算子(不一定是有界的)的受控半线性演化方程相关的考奇问题,我们获得了在任意固定(无附加约束)时间间隔上精确可控性进入给定终态(以及在中间时刻进入给定中间状态)的充分条件。在这里,我们使用了布劳德-明蒂定理(Browder-Minty theorem),以及受控系统解连续延续到中间状态的链式技术。作为示例,我们考虑了一个半线性假抛物方程和一个半线性波方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Exact Global Controllability of a Semilinear Evolution Equation

Abstract

For the Cauchy problem associated with a controlled semilinear evolution equation with an operator (not necessarily bounded) in a Hilbert space, we obtain sufficient conditions for exact controllability into a given terminal state (and also into given intermediate states at interim time moments) on an arbitrarily fixed (without additional constraints) time interval. Here we use the Browder—Minty theorem and also a chain technology of successive continuation of the solution of the controlled system to intermediate states. As examples, we consider a semilinear pseudoparabolic equation and a semilinear wave equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信