反规范定义的次洛伦兹极值

IF 0.8 4区 数学 Q2 MATHEMATICS
A. V. Podobryaev
{"title":"反规范定义的次洛伦兹极值","authors":"A. V. Podobryaev","doi":"10.1134/s001226612403008x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider a left-invariant sub-Lorentzian structure on a Lie group. This structure is\nassumed to be defined by a closed convex salient cone in the corresponding Lie algebra and a\ncontinuous antinorm associated with this cone. We derive the Hamiltonian system for\nsub-Lorentzian extremals and give conditions under which normal extremal trajectories keep their\ncausal type. Tangent vectors of abnormal extremal trajectories are either lightlike or are tangent\nvectors of sub-Riemannian abnormal extremal trajectories for the sub-Riemannian distribution\nspanned by the cone.\n</p>","PeriodicalId":50580,"journal":{"name":"Differential Equations","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-Lorentzian Extremals Defined by an Antinorm\",\"authors\":\"A. V. Podobryaev\",\"doi\":\"10.1134/s001226612403008x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider a left-invariant sub-Lorentzian structure on a Lie group. This structure is\\nassumed to be defined by a closed convex salient cone in the corresponding Lie algebra and a\\ncontinuous antinorm associated with this cone. We derive the Hamiltonian system for\\nsub-Lorentzian extremals and give conditions under which normal extremal trajectories keep their\\ncausal type. Tangent vectors of abnormal extremal trajectories are either lightlike or are tangent\\nvectors of sub-Riemannian abnormal extremal trajectories for the sub-Riemannian distribution\\nspanned by the cone.\\n</p>\",\"PeriodicalId\":50580,\"journal\":{\"name\":\"Differential Equations\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s001226612403008x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s001226612403008x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了在一个李群上的左不变亚洛伦兹结构。该结构被假定为由相应的李代数中的闭凸突出锥和与该锥相关的连续反规范所定义。我们推导了次洛伦兹极值的哈密顿系统,并给出了正常极值轨迹保持其因果类型的条件。异常极值轨迹的切向量要么是轻型的,要么是锥体所扫描的亚黎曼分布的亚黎曼异常极值轨迹的切向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-Lorentzian Extremals Defined by an Antinorm

Abstract

We consider a left-invariant sub-Lorentzian structure on a Lie group. This structure is assumed to be defined by a closed convex salient cone in the corresponding Lie algebra and a continuous antinorm associated with this cone. We derive the Hamiltonian system for sub-Lorentzian extremals and give conditions under which normal extremal trajectories keep their causal type. Tangent vectors of abnormal extremal trajectories are either lightlike or are tangent vectors of sub-Riemannian abnormal extremal trajectories for the sub-Riemannian distribution spanned by the cone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential Equations
Differential Equations 数学-数学
CiteScore
1.30
自引率
33.30%
发文量
72
审稿时长
3-8 weeks
期刊介绍: Differential Equations is a journal devoted to differential equations and the associated integral equations. The journal publishes original articles by authors from all countries and accepts manuscripts in English and Russian. The topics of the journal cover ordinary differential equations, partial differential equations, spectral theory of differential operators, integral and integral–differential equations, difference equations and their applications in control theory, mathematical modeling, shell theory, informatics, and oscillation theory. The journal is published in collaboration with the Department of Mathematics and the Division of Nanotechnologies and Information Technologies of the Russian Academy of Sciences and the Institute of Mathematics of the National Academy of Sciences of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信