计算剪切产品

Arthur C. Norman, Stephen M. Watt
{"title":"计算剪切产品","authors":"Arthur C. Norman, Stephen M. Watt","doi":"arxiv-2407.04133","DOIUrl":null,"url":null,"abstract":"Sometimes only some digits of a numerical product or some terms of a\npolynomial or series product are required. Frequently these constitute the most\nsignificant or least significant part of the value, for example when computing\ninitial values or refinement steps in iterative approximation schemes. Other\nsituations require the middle portion. In this paper we provide algorithms for\nthe general problem of computing a given span of coefficients within a product,\nthat is the terms within a range of degrees for univariate polynomials or range\ndigits of an integer. This generalizes the \"middle product\" concept of Hanrot,\nQuercia and Zimmerman. We are primarily interested in problems of modest size\nwhere constant speed up factors can improve overall system performance, and\ntherefore focus the discussion on classical and Karatsuba multiplication and\nhow methods may be combined.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"2017 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Clipped Products\",\"authors\":\"Arthur C. Norman, Stephen M. Watt\",\"doi\":\"arxiv-2407.04133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sometimes only some digits of a numerical product or some terms of a\\npolynomial or series product are required. Frequently these constitute the most\\nsignificant or least significant part of the value, for example when computing\\ninitial values or refinement steps in iterative approximation schemes. Other\\nsituations require the middle portion. In this paper we provide algorithms for\\nthe general problem of computing a given span of coefficients within a product,\\nthat is the terms within a range of degrees for univariate polynomials or range\\ndigits of an integer. This generalizes the \\\"middle product\\\" concept of Hanrot,\\nQuercia and Zimmerman. We are primarily interested in problems of modest size\\nwhere constant speed up factors can improve overall system performance, and\\ntherefore focus the discussion on classical and Karatsuba multiplication and\\nhow methods may be combined.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"2017 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有时只需要数值乘积的某些位数或二项式或级数乘积的某些项。例如,在计算迭代逼近方案中的初始值或细化步骤时,这些数字通常构成数值中最重要或最不重要的部分。其他情况则需要中间部分。在本文中,我们提供了计算积内给定系数跨度的一般问题的算法,即计算单变量多项式或整数的范围内的项。这概括了 Hanrot、Quercia 和 Zimmerman 的 "中间积 "概念。我们主要关注的是规模不大的问题,在这些问题中,恒定的加速因子可以提高系统的整体性能,因此讨论的重点是经典乘法和卡拉祖巴乘法,以及如何将这两种方法结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Clipped Products
Sometimes only some digits of a numerical product or some terms of a polynomial or series product are required. Frequently these constitute the most significant or least significant part of the value, for example when computing initial values or refinement steps in iterative approximation schemes. Other situations require the middle portion. In this paper we provide algorithms for the general problem of computing a given span of coefficients within a product, that is the terms within a range of degrees for univariate polynomials or range digits of an integer. This generalizes the "middle product" concept of Hanrot, Quercia and Zimmerman. We are primarily interested in problems of modest size where constant speed up factors can improve overall system performance, and therefore focus the discussion on classical and Karatsuba multiplication and how methods may be combined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信