Hui Chen, Zhi Wang, DaHeng Wang, Feng Xiao, Guang-En Fu, XueLing Bu, Lei Zhao, Tao Zhang, DaHeng Wu, JiBin Pu
{"title":"合理设计用于长期海洋防污的坚固透明超级斥力表面","authors":"Hui Chen, Zhi Wang, DaHeng Wang, Feng Xiao, Guang-En Fu, XueLing Bu, Lei Zhao, Tao Zhang, DaHeng Wu, JiBin Pu","doi":"10.1007/s11431-023-2700-8","DOIUrl":null,"url":null,"abstract":"<p>Superhydrophobic surfaces have demonstrated exceptional efficacy in combatting biofouling contaminations of optical devices and equipment in marine applications. However, the fabrication of highly transparent superhydrophobic materials remains a formidable challenge due to the inherent trade-off between surface roughness for superhydrophobicity and optical transparency. Herein, we design a robust and transparent superhydrophobic coating (Si-POSS) embedded silica nanoparticles (200 nm) with fluorinated polyhedral oligomeric silsesquioxanes (F-POSS) and zinc pyrithione (ZPT). The Si-POSS coating exhibits excellent water repellence toward diverse liquids and optical transmittance exceeding 90% in the visible spectrum. Moreover, the Si-POSS coating sustains long-term anti-bacterial (> 99.11%) and anti-algal effects for over 30 days, accompanied by mechanical, chemical, and thermal stability. This research asserts that the Si-POSS coating with outstanding combined characteristics holds significant potential for marine applications, particularly in self-cleaning and antifouling endeavors.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"49 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of robust and transparent superrepellent surfaces for long-term marine antifouling\",\"authors\":\"Hui Chen, Zhi Wang, DaHeng Wang, Feng Xiao, Guang-En Fu, XueLing Bu, Lei Zhao, Tao Zhang, DaHeng Wu, JiBin Pu\",\"doi\":\"10.1007/s11431-023-2700-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Superhydrophobic surfaces have demonstrated exceptional efficacy in combatting biofouling contaminations of optical devices and equipment in marine applications. However, the fabrication of highly transparent superhydrophobic materials remains a formidable challenge due to the inherent trade-off between surface roughness for superhydrophobicity and optical transparency. Herein, we design a robust and transparent superhydrophobic coating (Si-POSS) embedded silica nanoparticles (200 nm) with fluorinated polyhedral oligomeric silsesquioxanes (F-POSS) and zinc pyrithione (ZPT). The Si-POSS coating exhibits excellent water repellence toward diverse liquids and optical transmittance exceeding 90% in the visible spectrum. Moreover, the Si-POSS coating sustains long-term anti-bacterial (> 99.11%) and anti-algal effects for over 30 days, accompanied by mechanical, chemical, and thermal stability. This research asserts that the Si-POSS coating with outstanding combined characteristics holds significant potential for marine applications, particularly in self-cleaning and antifouling endeavors.</p>\",\"PeriodicalId\":21612,\"journal\":{\"name\":\"Science China Technological Sciences\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Technological Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11431-023-2700-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2700-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Rational design of robust and transparent superrepellent surfaces for long-term marine antifouling
Superhydrophobic surfaces have demonstrated exceptional efficacy in combatting biofouling contaminations of optical devices and equipment in marine applications. However, the fabrication of highly transparent superhydrophobic materials remains a formidable challenge due to the inherent trade-off between surface roughness for superhydrophobicity and optical transparency. Herein, we design a robust and transparent superhydrophobic coating (Si-POSS) embedded silica nanoparticles (200 nm) with fluorinated polyhedral oligomeric silsesquioxanes (F-POSS) and zinc pyrithione (ZPT). The Si-POSS coating exhibits excellent water repellence toward diverse liquids and optical transmittance exceeding 90% in the visible spectrum. Moreover, the Si-POSS coating sustains long-term anti-bacterial (> 99.11%) and anti-algal effects for over 30 days, accompanied by mechanical, chemical, and thermal stability. This research asserts that the Si-POSS coating with outstanding combined characteristics holds significant potential for marine applications, particularly in self-cleaning and antifouling endeavors.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.