Md Sahil Rafiq, Mohammad Shakhawat Hosen Apurba, Nadim Reza Khandaker
{"title":"在废高炉铁渣的帮助下,通过次氯酸钙氧化和后续过滤提高纺织废水的可持续性","authors":"Md Sahil Rafiq, Mohammad Shakhawat Hosen Apurba, Nadim Reza Khandaker","doi":"10.1111/wej.12948","DOIUrl":null,"url":null,"abstract":"The textile industry is vital to Bangladesh's economy, employing over three million women and being the top foreign exchange earner. However, it severely impacts the environment because of untreated wastewater discharge. High treatment costs, reliant on expensive imported chemicals, worsen the issue. The Environmental Conservation Rules (ECR) 2023 of Bangladesh requires textile wastewater discharge to have a colour of less than 150 Pt‐Co, which current systems struggle to meet affordably. A pilot project tested a sustainable solution using chemical oxidation with calcium hypochlorite and sand filtration with blast furnace iron slag. This method effectively removed colour, and the treated water showed total dissolved solids (TDS) levels of 157 ± 4 mg/L, total suspended solids (TSS) levels of 8 ± 2 mg/L and chemical oxygen demand (COD) levels of 9 ± 3 mg/L, with reductions of 92%, 87% and 94%, respectively, making it a viable solution for resource‐limited economies.","PeriodicalId":23753,"journal":{"name":"Water and Environment Journal","volume":"38 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing textile wastewater sustainability through calcium hypochlorite oxidation and subsequent filtration with assistance from waste blast furnace iron slag\",\"authors\":\"Md Sahil Rafiq, Mohammad Shakhawat Hosen Apurba, Nadim Reza Khandaker\",\"doi\":\"10.1111/wej.12948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The textile industry is vital to Bangladesh's economy, employing over three million women and being the top foreign exchange earner. However, it severely impacts the environment because of untreated wastewater discharge. High treatment costs, reliant on expensive imported chemicals, worsen the issue. The Environmental Conservation Rules (ECR) 2023 of Bangladesh requires textile wastewater discharge to have a colour of less than 150 Pt‐Co, which current systems struggle to meet affordably. A pilot project tested a sustainable solution using chemical oxidation with calcium hypochlorite and sand filtration with blast furnace iron slag. This method effectively removed colour, and the treated water showed total dissolved solids (TDS) levels of 157 ± 4 mg/L, total suspended solids (TSS) levels of 8 ± 2 mg/L and chemical oxygen demand (COD) levels of 9 ± 3 mg/L, with reductions of 92%, 87% and 94%, respectively, making it a viable solution for resource‐limited economies.\",\"PeriodicalId\":23753,\"journal\":{\"name\":\"Water and Environment Journal\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water and Environment Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/wej.12948\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water and Environment Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/wej.12948","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Enhancing textile wastewater sustainability through calcium hypochlorite oxidation and subsequent filtration with assistance from waste blast furnace iron slag
The textile industry is vital to Bangladesh's economy, employing over three million women and being the top foreign exchange earner. However, it severely impacts the environment because of untreated wastewater discharge. High treatment costs, reliant on expensive imported chemicals, worsen the issue. The Environmental Conservation Rules (ECR) 2023 of Bangladesh requires textile wastewater discharge to have a colour of less than 150 Pt‐Co, which current systems struggle to meet affordably. A pilot project tested a sustainable solution using chemical oxidation with calcium hypochlorite and sand filtration with blast furnace iron slag. This method effectively removed colour, and the treated water showed total dissolved solids (TDS) levels of 157 ± 4 mg/L, total suspended solids (TSS) levels of 8 ± 2 mg/L and chemical oxygen demand (COD) levels of 9 ± 3 mg/L, with reductions of 92%, 87% and 94%, respectively, making it a viable solution for resource‐limited economies.
期刊介绍:
Water and Environment Journal is an internationally recognised peer reviewed Journal for the dissemination of innovations and solutions focussed on enhancing water management best practice. Water and Environment Journal is available to over 12,000 institutions with a further 7,000 copies physically distributed to the Chartered Institution of Water and Environmental Management (CIWEM) membership, comprised of environment sector professionals based across the value chain (utilities, consultancy, technology suppliers, regulators, government and NGOs). As such, the journal provides a conduit between academics and practitioners. We therefore particularly encourage contributions focussed at the interface between academia and industry, which deliver industrially impactful applied research underpinned by scientific evidence. We are keen to attract papers on a broad range of subjects including:
-Water and wastewater treatment for agricultural, municipal and industrial applications
-Sludge treatment including processing, storage and management
-Water recycling
-Urban and stormwater management
-Integrated water management strategies
-Water infrastructure and distribution
-Climate change mitigation including management of impacts on agriculture, urban areas and infrastructure