分数超容积不等式的相等条件

Pub Date : 2024-07-05 DOI:10.1007/s00454-024-00672-8
Mark Meyer
{"title":"分数超容积不等式的相等条件","authors":"Mark Meyer","doi":"10.1007/s00454-024-00672-8","DOIUrl":null,"url":null,"abstract":"<p>While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in <span>\\(\\mathbb {R}^n\\)</span>. In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension <span>\\(n=1\\)</span>. In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition <span>\\((\\mathcal {G},\\beta )\\)</span> and nonempty sets <span>\\(A_1,\\dots ,A_m\\subseteq \\mathbb {R}\\)</span>, equality holds iff for each <span>\\(S\\in \\mathcal {G}\\)</span>, the set <span>\\(\\sum _{i\\in S}A_i\\)</span> is an interval. In the case of dimension <span>\\(n\\ge 2\\)</span> we will show that equality can hold if and only if the set <span>\\(\\sum _{i=1}^{m}A_i\\)</span> has measure 0.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equality Conditions for the Fractional Superadditive Volume Inequalities\",\"authors\":\"Mark Meyer\",\"doi\":\"10.1007/s00454-024-00672-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in <span>\\\\(\\\\mathbb {R}^n\\\\)</span>. In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension <span>\\\\(n=1\\\\)</span>. In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition <span>\\\\((\\\\mathcal {G},\\\\beta )\\\\)</span> and nonempty sets <span>\\\\(A_1,\\\\dots ,A_m\\\\subseteq \\\\mathbb {R}\\\\)</span>, equality holds iff for each <span>\\\\(S\\\\in \\\\mathcal {G}\\\\)</span>, the set <span>\\\\(\\\\sum _{i\\\\in S}A_i\\\\)</span> is an interval. In the case of dimension <span>\\\\(n\\\\ge 2\\\\)</span> we will show that equality can hold if and only if the set <span>\\\\(\\\\sum _{i=1}^{m}A_i\\\\)</span> has measure 0.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00672-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00672-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在研究 Lebesgue 测量的集合函数性质时,F. Barthe 和 M. Madiman 证明了 Lebesgue 测量在 \(\mathbb {R}^n\) 紧凑集合上是分数超正定的。为此,他们证明了维度 \(n=1\) 中布伦-明可夫斯基-柳斯特尼克(Brunn-Minkowski-Lyusternik,BML)不等式的分数广义化。在本文中,我们将证明任意维度的分数叠加体积不等式的相等条件。非难等式条件如下。在一维情况下,我们将证明对于分数分割 \((\mathcal {G},\beta )\)和非空集 \(A_1,\dots ,A_m\subseteq \mathbb {R}\),如果对于每个 \(S\in \mathcal {G}\),集 \(\sum _{i\in S}A_i\) 是一个区间,那么等式成立。在维数为\(nge 2\) 的情况下,我们将证明只有当且仅当集合\(\sum _{i=1}^{m}A_i\) 的度量为 0 时,相等才成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equality Conditions for the Fractional Superadditive Volume Inequalities

While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in \(\mathbb {R}^n\). In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension \(n=1\). In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition \((\mathcal {G},\beta )\) and nonempty sets \(A_1,\dots ,A_m\subseteq \mathbb {R}\), equality holds iff for each \(S\in \mathcal {G}\), the set \(\sum _{i\in S}A_i\) is an interval. In the case of dimension \(n\ge 2\) we will show that equality can hold if and only if the set \(\sum _{i=1}^{m}A_i\) has measure 0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信