Cayley 树上硬核-实体-实体模型的 Gibbs 度量

IF 2.2 3区 物理与天体物理 Q2 MECHANICS
Benedikt Jahnel and Utkir Rozikov
{"title":"Cayley 树上硬核-实体-实体模型的 Gibbs 度量","authors":"Benedikt Jahnel and Utkir Rozikov","doi":"10.1088/1742-5468/ad5433","DOIUrl":null,"url":null,"abstract":"We investigate the finite-state p-solid-on-solid (p-SOS) model for on Cayley trees of order and establish a system of functional equations where each solution corresponds to a (splitting) Gibbs measure of the model. Our main result is that, for three states, and increasing coupling strength, the number of translation-invariant Gibbs measures behaves as . This phase diagram is qualitatively similar to the one observed for three-state p-SOS models with p > 0 and, in the case of k = 2, we demonstrate that, on the level of the functional equations, the transition is continuous.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"41 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gibbs measures for hardcore-solid-on-solid models on Cayley trees\",\"authors\":\"Benedikt Jahnel and Utkir Rozikov\",\"doi\":\"10.1088/1742-5468/ad5433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the finite-state p-solid-on-solid (p-SOS) model for on Cayley trees of order and establish a system of functional equations where each solution corresponds to a (splitting) Gibbs measure of the model. Our main result is that, for three states, and increasing coupling strength, the number of translation-invariant Gibbs measures behaves as . This phase diagram is qualitatively similar to the one observed for three-state p-SOS models with p > 0 and, in the case of k = 2, we demonstrate that, on the level of the functional equations, the transition is continuous.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad5433\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad5433","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有序 Cayley 树上的有限状态 p-固-固(p-SOS)模型,并建立了一个函数方程组,其中每个解对应于模型的一个(分裂)吉布斯量。我们的主要结果是,对于三个状态和不断增加的耦合强度,平移不变吉布斯量的数量表现为 。这个相图与 p > 0 的三态 p-SOS 模型的相图在性质上非常相似,而且在 k = 2 的情况下,我们证明了在函数方程的层面上,过渡是连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gibbs measures for hardcore-solid-on-solid models on Cayley trees
We investigate the finite-state p-solid-on-solid (p-SOS) model for on Cayley trees of order and establish a system of functional equations where each solution corresponds to a (splitting) Gibbs measure of the model. Our main result is that, for three states, and increasing coupling strength, the number of translation-invariant Gibbs measures behaves as . This phase diagram is qualitatively similar to the one observed for three-state p-SOS models with p > 0 and, in the case of k = 2, we demonstrate that, on the level of the functional equations, the transition is continuous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
12.50%
发文量
210
审稿时长
1.0 months
期刊介绍: JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged. The journal covers different topics which correspond to the following keyword sections. 1. Quantum statistical physics, condensed matter, integrable systems Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo 2. Classical statistical mechanics, equilibrium and non-equilibrium Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo 3. Disordered systems, classical and quantum Scientific Directors: Eduardo Fradkin and Riccardo Zecchina 4. Interdisciplinary statistical mechanics Scientific Directors: Matteo Marsili and Riccardo Zecchina 5. Biological modelling and information Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信