{"title":"借助 CRISPE 框架,利用大型语言模型生成新型元搜索算法","authors":"Rui Zhong, Yuefeng Xu, Chao Zhang, Jun Yu","doi":"10.1007/s10586-024-04654-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce the large language model (LLM) ChatGPT-3.5 to automatically and intelligently generate a new metaheuristic algorithm (MA) according to the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment). The novel animal-inspired MA named Zoological Search Optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework\",\"authors\":\"Rui Zhong, Yuefeng Xu, Chao Zhang, Jun Yu\",\"doi\":\"10.1007/s10586-024-04654-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce the large language model (LLM) ChatGPT-3.5 to automatically and intelligently generate a new metaheuristic algorithm (MA) according to the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment). The novel animal-inspired MA named Zoological Search Optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04654-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04654-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework
In this paper, we introduce the large language model (LLM) ChatGPT-3.5 to automatically and intelligently generate a new metaheuristic algorithm (MA) according to the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment). The novel animal-inspired MA named Zoological Search Optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.