{"title":"涉及信号迪里希特边界条件的三维趋化-斯托克斯系统中的平滑解","authors":"Yulan Wang, Michael Winkler, Zhaoyin Xiang","doi":"10.1007/s00030-024-00982-z","DOIUrl":null,"url":null,"abstract":"<p>In a smoothly bounded domain <span>\\(\\Omega \\subset \\mathbb {R}^3\\)</span>, the chemotaxis-Stokes system </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} n_t + u\\cdot \\nabla n = \\Delta n - \\nabla \\cdot (n\\nabla c), \\\\ c_t + u\\cdot \\nabla c =\\Delta c - nc, \\\\ u_t = \\Delta u + \\nabla P + n\\nabla \\phi , \\qquad \\nabla \\cdot u =0 \\end{array} \\right. \\end{aligned}$$</span><p>is considered along with the boundary conditions </p><span>$$\\begin{aligned} \\big (\\nabla n - n\\nabla c\\big )\\cdot \\nu = 0, \\quad c=c_\\star , \\quad u=0, \\quad x\\in \\partial \\Omega , \\,\\, t>0, \\end{aligned}$$</span><p>where <span>\\(c_\\star \\ge 0\\)</span> is a given constant. It is shown that under a smallness condition on <span>\\(c(\\cdot ,0)\\)</span> and suitable assumptions on regularity of the initial data, global classical solutions exist which are uniformly bounded.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth solutions in a three-dimensional chemotaxis-Stokes system involving Dirichlet boundary conditions for the signal\",\"authors\":\"Yulan Wang, Michael Winkler, Zhaoyin Xiang\",\"doi\":\"10.1007/s00030-024-00982-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a smoothly bounded domain <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^3\\\\)</span>, the chemotaxis-Stokes system </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{l} n_t + u\\\\cdot \\\\nabla n = \\\\Delta n - \\\\nabla \\\\cdot (n\\\\nabla c), \\\\\\\\ c_t + u\\\\cdot \\\\nabla c =\\\\Delta c - nc, \\\\\\\\ u_t = \\\\Delta u + \\\\nabla P + n\\\\nabla \\\\phi , \\\\qquad \\\\nabla \\\\cdot u =0 \\\\end{array} \\\\right. \\\\end{aligned}$$</span><p>is considered along with the boundary conditions </p><span>$$\\\\begin{aligned} \\\\big (\\\\nabla n - n\\\\nabla c\\\\big )\\\\cdot \\\\nu = 0, \\\\quad c=c_\\\\star , \\\\quad u=0, \\\\quad x\\\\in \\\\partial \\\\Omega , \\\\,\\\\, t>0, \\\\end{aligned}$$</span><p>where <span>\\\\(c_\\\\star \\\\ge 0\\\\)</span> is a given constant. It is shown that under a smallness condition on <span>\\\\(c(\\\\cdot ,0)\\\\)</span> and suitable assumptions on regularity of the initial data, global classical solutions exist which are uniformly bounded.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00982-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00982-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在平滑有界域(Omega 子集)中,化合-斯托克斯系统 $$begin{aligned}(开始{aligned})。\n_t + u\cdot \nabla n = \Delta n - \nabla \cdot (n\nabla c)、\\ c_t + u\cdot \nabla c =\Delta c - nc, \ u_t = \Delta u + \nabla P + n\nabla \phi , \qquad \nabla \cdot u =0 \end{array}.\(right.\end{aligned}$$与边界条件$$\begin{aligned}一起考虑\big (\nabla n - n\nabla c\big )\cdot \nu = 0, \quad c=c\star , \quad u=0, \quad x\in \partial \Omega , \,\, t>0, \end{aligned}$ 其中\(c_\star \ge 0\) 是一个给定的常数。研究表明,在 \(c(\cdot ,0)\)的微小性条件和初始数据正则性的适当假设下,存在均匀有界的全局经典解。
where \(c_\star \ge 0\) is a given constant. It is shown that under a smallness condition on \(c(\cdot ,0)\) and suitable assumptions on regularity of the initial data, global classical solutions exist which are uniformly bounded.